Total
3511 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-8065 | 2025-12-20 | N/A | ||
| A buffer overflow vulnerability exists in the ONVIF XML parser of Tapo C200 V3. An unauthenticated attacker on the same local network segment can send specially crafted SOAP XML requests, causing memory overflow and device crash, resulting in denial-of-service (DoS). | ||||
| CVE-2025-59529 | 1 Avahi | 1 Avahi | 2025-12-19 | 5.5 Medium |
| Avahi is a system which facilitates service discovery on a local network via the mDNS/DNS-SD protocol suite. In versions up to and including 0.9-rc2, the simple protocol server ignores the documented client limit and accepts unlimited connections, allowing for easy local DoS. Although `CLIENTS_MAX` is defined, `server_work()` unconditionally `accept()`s and `client_new()` always appends the new client and increments `n_clients`. There is no check against the limit. When client cannot be accepted as a result of maximal socket number of avahi-daemon, it logs unconditionally error per each connection. Unprivileged local users can exhaust daemon memory and file descriptors, causing a denial of service system-wide for mDNS/DNS-SD. Exhausting local file descriptors causes increased system load caused by logging errors of each of request. Overloading prevents glibc calls using nss-mdns plugins to resolve `*.local.` names and link-local addresses. As of time of publication, no known patched versions are available, but a candidate fix is available in pull request 808, and some workarounds are available. Simple clients are offered for nss-mdns package functionality. It is not possible to disable the unix socket `/run/avahi-daemon/socket`, but resolution requests received via DBus are not affected directly. Tools avahi-resolve, avahi-resolve-address and avahi-resolve-host-name are not affected, they use DBus interface. It is possible to change permissions of unix socket after avahi-daemon is started. But avahi-daemon does not provide any configuration for it. Additional access restrictions like SELinux can also prevent unwanted tools to access the socket and keep resolution working for trusted users. | ||||
| CVE-2024-58306 | 1 Hans Alshoff | 1 Minalic | 2025-12-18 | N/A |
| minaliC 2.0.0 contains a denial of service vulnerability that allows remote attackers to crash the web server by sending oversized GET requests. Attackers can send crafted HTTP requests with excessive data to overwhelm the server and cause service interruption. | ||||
| CVE-2025-67725 | 1 Tornadoweb | 1 Tornado | 2025-12-18 | 7.5 High |
| Tornado is a Python web framework and asynchronous networking library. In versions 6.5.2 and below, a single maliciously crafted HTTP request can block the server's event loop for an extended period, caused by the HTTPHeaders.add method. The function accumulates values using string concatenation when the same header name is repeated, causing a Denial of Service (DoS). Due to Python string immutability, each concatenation copies the entire string, resulting in O(n²) time complexity. The severity can vary from high if max_header_size has been increased from its default, to low if it has its default value of 64KB. This issue is fixed in version 6.5.3. | ||||
| CVE-2025-67726 | 1 Tornadoweb | 1 Tornado | 2025-12-18 | 7.5 High |
| Tornado is a Python web framework and asynchronous networking library. Versions 6.5.2 and below use an inefficient algorithm when parsing parameters for HTTP header values, potentially causing a DoS. The _parseparam function in httputil.py is used to parse specific HTTP header values, such as those in multipart/form-data and repeatedly calls string.count() within a nested loop while processing quoted semicolons. If an attacker sends a request with a large number of maliciously crafted parameters in a Content-Disposition header, the server's CPU usage increases quadratically (O(n²)) during parsing. Due to Tornado's single event loop architecture, a single malicious request can cause the entire server to become unresponsive for an extended period. This issue is fixed in version 6.5.3. | ||||
| CVE-2023-29499 | 2 Gnome, Redhat | 2 Glib, Enterprise Linux | 2025-12-18 | 5.5 Medium |
| A flaw was found in GLib. GVariant deserialization fails to validate that the input conforms to the expected format, leading to denial of service. | ||||
| CVE-2023-4577 | 2 Mozilla, Redhat | 8 Firefox, Firefox Esr, Thunderbird and 5 more | 2025-12-18 | 6.5 Medium |
| When `UpdateRegExpStatics` attempted to access `initialStringHeap` it could already have been garbage collected prior to entering the function, which could potentially have led to an exploitable crash. This vulnerability affects Firefox < 117, Firefox ESR < 115.2, and Thunderbird < 115.2. | ||||
| CVE-2025-8872 | 1 Arista | 1 Eos | 2025-12-18 | 6.5 Medium |
| On affected platforms running Arista EOS with OSPFv3 configured, a specially crafted packet can cause the OSFPv3 process to have high CPU utilization which may result in the OSFPv3 process being restarted. This may cause disruption in the OSFPv3 routes on the switch. This issue was discovered internally by Arista and is not aware of any malicious uses of this issue in customer networks. | ||||
| CVE-2021-47509 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ALSA: pcm: oss: Limit the period size to 16MB Set the practical limit to the period size (the fragment shift in OSS) instead of a full 31bit; a too large value could lead to the exhaust of memory as we allocate temporary buffers of the period size, too. As of this patch, we set to 16MB limit, which should cover all use cases. | ||||
| CVE-2021-47329 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 6.2 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: megaraid_sas: Fix resource leak in case of probe failure The driver doesn't clean up all the allocated resources properly when scsi_add_host(), megasas_start_aen() function fails during the PCI device probe. Clean up all those resources. | ||||
| CVE-2021-47284 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-12-18 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: isdn: mISDN: netjet: Fix crash in nj_probe: 'nj_setup' in netjet.c might fail with -EIO and in this case 'card->irq' is initialized and is bigger than zero. A subsequent call to 'nj_release' will free the irq that has not been requested. Fix this bug by deleting the previous assignment to 'card->irq' and just keep the assignment before 'request_irq'. The KASAN's log reveals it: [ 3.354615 ] WARNING: CPU: 0 PID: 1 at kernel/irq/manage.c:1826 free_irq+0x100/0x480 [ 3.355112 ] Modules linked in: [ 3.355310 ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.13.0-rc1-00144-g25a1298726e #13 [ 3.355816 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [ 3.356552 ] RIP: 0010:free_irq+0x100/0x480 [ 3.356820 ] Code: 6e 08 74 6f 4d 89 f4 e8 5e ac 09 00 4d 8b 74 24 18 4d 85 f6 75 e3 e8 4f ac 09 00 8b 75 c8 48 c7 c7 78 c1 2e 85 e8 e0 cf f5 ff <0f> 0b 48 8b 75 c0 4c 89 ff e8 72 33 0b 03 48 8b 43 40 4c 8b a0 80 [ 3.358012 ] RSP: 0000:ffffc90000017b48 EFLAGS: 00010082 [ 3.358357 ] RAX: 0000000000000000 RBX: ffff888104dc8000 RCX: 0000000000000000 [ 3.358814 ] RDX: ffff8881003c8000 RSI: ffffffff8124a9e6 RDI: 00000000ffffffff [ 3.359272 ] RBP: ffffc90000017b88 R08: 0000000000000000 R09: 0000000000000000 [ 3.359732 ] R10: ffffc900000179f0 R11: 0000000000001d04 R12: 0000000000000000 [ 3.360195 ] R13: ffff888107dc6000 R14: ffff888107dc6928 R15: ffff888104dc80a8 [ 3.360652 ] FS: 0000000000000000(0000) GS:ffff88817bc00000(0000) knlGS:0000000000000000 [ 3.361170 ] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3.361538 ] CR2: 0000000000000000 CR3: 000000000582e000 CR4: 00000000000006f0 [ 3.362003 ] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 3.362175 ] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 3.362175 ] Call Trace: [ 3.362175 ] nj_release+0x51/0x1e0 [ 3.362175 ] nj_probe+0x450/0x950 [ 3.362175 ] ? pci_device_remove+0x110/0x110 [ 3.362175 ] local_pci_probe+0x45/0xa0 [ 3.362175 ] pci_device_probe+0x12b/0x1d0 [ 3.362175 ] really_probe+0x2a9/0x610 [ 3.362175 ] driver_probe_device+0x90/0x1d0 [ 3.362175 ] ? mutex_lock_nested+0x1b/0x20 [ 3.362175 ] device_driver_attach+0x68/0x70 [ 3.362175 ] __driver_attach+0x124/0x1b0 [ 3.362175 ] ? device_driver_attach+0x70/0x70 [ 3.362175 ] bus_for_each_dev+0xbb/0x110 [ 3.362175 ] ? rdinit_setup+0x45/0x45 [ 3.362175 ] driver_attach+0x27/0x30 [ 3.362175 ] bus_add_driver+0x1eb/0x2a0 [ 3.362175 ] driver_register+0xa9/0x180 [ 3.362175 ] __pci_register_driver+0x82/0x90 [ 3.362175 ] ? w6692_init+0x38/0x38 [ 3.362175 ] nj_init+0x36/0x38 [ 3.362175 ] do_one_initcall+0x7f/0x3d0 [ 3.362175 ] ? rdinit_setup+0x45/0x45 [ 3.362175 ] ? rcu_read_lock_sched_held+0x4f/0x80 [ 3.362175 ] kernel_init_freeable+0x2aa/0x301 [ 3.362175 ] ? rest_init+0x2c0/0x2c0 [ 3.362175 ] kernel_init+0x18/0x190 [ 3.362175 ] ? rest_init+0x2c0/0x2c0 [ 3.362175 ] ? rest_init+0x2c0/0x2c0 [ 3.362175 ] ret_from_fork+0x1f/0x30 [ 3.362175 ] Kernel panic - not syncing: panic_on_warn set ... [ 3.362175 ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.13.0-rc1-00144-g25a1298726e #13 [ 3.362175 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [ 3.362175 ] Call Trace: [ 3.362175 ] dump_stack+0xba/0xf5 [ 3.362175 ] ? free_irq+0x100/0x480 [ 3.362175 ] panic+0x15a/0x3f2 [ 3.362175 ] ? __warn+0xf2/0x150 [ 3.362175 ] ? free_irq+0x100/0x480 [ 3.362175 ] __warn+0x108/0x150 [ 3.362175 ] ? free_irq+0x100/0x480 [ 3.362175 ] report_bug+0x119/0x1c0 [ 3.362175 ] handle_bug+0x3b/0x80 [ 3.362175 ] exc_invalid_op+0x18/0x70 [ 3.362175 ] asm_exc_invalid_op+0x12/0x20 [ 3.362175 ] RIP: 0010:free_irq+0x100 ---truncated--- | ||||
| CVE-2025-65781 | 1 Wekan Project | 1 Wekan | 2025-12-18 | 8.2 High |
| An issue was discovered in Wekan The Open Source kanban board system up to version 18.15, fixed in 18.16. Attachment upload API treats the Authorization bearer value as a userId and enters a non-terminating body-handling branch for any non-empty bearer token, enabling trivial application-layer DoS and latent identity-spoofing. | ||||
| CVE-2021-3737 | 6 Canonical, Fedoraproject, Netapp and 3 more | 18 Ubuntu Linux, Fedora, Hci and 15 more | 2025-12-17 | 7.5 High |
| A flaw was found in python. An improperly handled HTTP response in the HTTP client code of python may allow a remote attacker, who controls the HTTP server, to make the client script enter an infinite loop, consuming CPU time. The highest threat from this vulnerability is to system availability. | ||||
| CVE-2025-21181 | 1 Microsoft | 24 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 21 more | 2025-12-17 | 7.5 High |
| Microsoft Message Queuing (MSMQ) Denial of Service Vulnerability | ||||
| CVE-2025-21352 | 1 Microsoft | 17 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 14 more | 2025-12-17 | 6.5 Medium |
| Internet Connection Sharing (ICS) Denial of Service Vulnerability | ||||
| CVE-2025-21351 | 1 Microsoft | 12 Windows 10 1607, Windows 10 1809, Windows 10 21h2 and 9 more | 2025-12-17 | 7.5 High |
| Windows Active Directory Domain Services API Denial of Service Vulnerability | ||||
| CVE-2025-43462 | 1 Apple | 6 Ios, Ipados, Iphone Os and 3 more | 2025-12-17 | 7.5 High |
| The issue was addressed with improved memory handling. This issue is fixed in tvOS 26.1, watchOS 26.1, macOS Tahoe 26.1, iOS 26.1 and iPadOS 26.1, visionOS 26.1. An app may be able to cause unexpected system termination or corrupt kernel memory. | ||||
| CVE-2025-48631 | 1 Google | 1 Android | 2025-12-17 | 6.5 Medium |
| In onHeaderDecoded of LocalImageResolver.java, there is a possible persistent denial of service due to resource exhaustion. This could lead to remote denial of service with no additional execution privileges needed. User interaction is not needed for exploitation. | ||||
| CVE-2025-48615 | 1 Google | 1 Android | 2025-12-17 | 7.8 High |
| In getComponentName of MediaButtonReceiverHolder.java, there is a possible desync in persistence due to resource exhaustion. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. | ||||
| CVE-2025-48603 | 1 Google | 1 Android | 2025-12-17 | 5.5 Medium |
| In InputMethodInfo of InputMethodInfo.java, there is a possible permanent denial of service due to resource exhaustion. This could lead to local denial of service with no additional execution privileges needed. User interaction is not needed for exploitation. | ||||