Filtered by CWE-347
Total 571 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-59288 2 Github, Microsoft 3 Github, Azure Playwright, Playwright 2025-10-27 5.3 Medium
Improper verification of cryptographic signature in GitHub allows an unauthorized attacker to perform spoofing over an adjacent network.
CVE-2025-34500 1 Shuffle Master 1 Deck Mate 2 2025-10-27 N/A
Deck Mate 2's firmware update mechanism accepts packages without cryptographic signature verification, encrypts them with a single hard-coded AES key shared across devices, and uses a truncated HMAC for integrity validation. Attackers with access to the update interface - typically via the unit's USB update port - can craft or modify firmware packages to execute arbitrary code as root, allowing persistent compromise of the device's integrity and deck randomization process. Physical or on-premises access remains the most likely attack path, though network-exposed or telemetry-enabled deployments could theoretically allow remote exploitation if misconfigured. The vendor confirmed that firmware updates have been issued to correct these update-chain weaknesses and that USB update access has been disabled on affected units.
CVE-2025-34503 1 Shuffle Master 1 Deck Mate 1 2025-10-27 N/A
Deck Mate 1 executes firmware directly from an external EEPROM without verifying authenticity or integrity. An attacker with physical access can replace or reflash the EEPROM to run arbitrary code that persists across reboots. Because this design predates modern secure-boot or signed-update mechanisms, affected systems should be physically protected or retired from service. The vendor has not indicated that firmware updates are available for this legacy model.
CVE-2025-12295 1 D-link 1 Dap-2695 2025-10-27 6.6 Medium
A weakness has been identified in D-Link DAP-2695 2.00RC13. The affected element is the function sub_40C6B8 of the component Firmware Update Handler. Executing manipulation can lead to improper verification of cryptographic signature. The attack can be launched remotely. Attacks of this nature are highly complex. The exploitability is described as difficult. The exploit has been made available to the public and could be exploited. This vulnerability only affects products that are no longer supported by the maintainer.
CVE-2025-58356 2025-10-27 N/A
Constellation is the first Confidential Kubernetes. The Constellation CVM image uses LUKS2-encrypted volumes for persistent storage. When opening an encrypted storage device, the CVM uses the libcryptsetup function crypt_activate_by_passhrase. If the VM is successful in opening the partition with the disk encryption key, it treats the volume as confidential. However, due to the unsafe handling of null keyslot algorithms in the cryptsetup 2.8.1, it is possible that the opened volume is not encrypted at all. Cryptsetup prior to version 2.8.1 does not report an error when processing LUKS2-formatted disks that use the cipher_null-ecb algorithm in the keyslot encryption field. This vulnerability is fixed in 2.24.0.
CVE-2025-40778 1 Isc 1 Bind 9 2025-10-27 8.6 High
Under certain circumstances, BIND is too lenient when accepting records from answers, allowing an attacker to inject forged data into the cache. This issue affects BIND 9 versions 9.11.0 through 9.16.50, 9.18.0 through 9.18.39, 9.20.0 through 9.20.13, 9.21.0 through 9.21.12, 9.11.3-S1 through 9.16.50-S1, 9.18.11-S1 through 9.18.39-S1, and 9.20.9-S1 through 9.20.13-S1.
CVE-2025-8556 1 Redhat 22 Acm, Advanced Cluster Security, Ceph Storage and 19 more 2025-10-22 3.7 Low
A flaw was found in CIRCL's implementation of the FourQ elliptic curve. This vulnerability allows an attacker to compromise session security via low-order point injection and incorrect point validation during Diffie-Hellman key exchange.
CVE-2025-46774 2 Apple, Fortinet 3 Macos, Forticlient, Forticlientmac 2025-10-22 6.8 Medium
An Improper Verification of Cryptographic Signature vulnerability [CWE-347] in FortiClient MacOS installer version 7.4.2 and below, version 7.2.9 and below, 7.0 all versions may allow a local user to escalate their privileges via FortiClient related executables.
CVE-2013-3900 1 Microsoft 22 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 19 more 2025-10-22 5.5 Medium
Why is Microsoft republishing a CVE from 2013? We are republishing CVE-2013-3900 in the Security Update Guide to update the Security Updates table and to inform customers that the EnableCertPaddingCheck is available in all currently supported versions of Windows 10 and Windows 11. While the format is different from the original CVE published in 2013, except for clarifications about how to configure the EnableCertPaddingCheck registry value, the information herein remains unchanged from the original text published on December 10, 2013, Microsoft does not plan to enforce the stricter verification behavior as a default functionality on supported releases of Microsoft Windows. This behavior remains available as an opt-in feature via reg key setting, and is available on supported editions of Windows released since December 10, 2013. This includes all currently supported versions of Windows 10 and Windows 11. The supporting code for this reg key was incorporated at the time of release for Windows 10 and Windows 11, so no security update is required; however, the reg key must be set. See the Security Updates table for the list of affected software. Vulnerability Description A remote code execution vulnerability exists in the way that the WinVerifyTrust function handles Windows Authenticode signature verification for portable executable (PE) files. An anonymous attacker could exploit the vulnerability by modifying an existing signed executable file to leverage unverified portions of the file in such a way as to add malicious code to the file without invalidating the signature. An attacker who successfully exploited this vulnerability could take complete control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. If a user is logged on with administrative user rights, an attacker who successfully exploited this vulnerability could take complete control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. Users whose accounts are configured to have fewer user rights on the system could be less impacted than users who operate with administrative user rights. Exploitation of this vulnerability requires that a user or application run or install a specially crafted, signed PE file. An attacker could modify an... See more at https://msrc.microsoft.com/update-guide/vulnerability/CVE-2013-3900
CVE-2020-2021 1 Paloaltonetworks 1 Pan-os 2025-10-22 10 Critical
When Security Assertion Markup Language (SAML) authentication is enabled and the 'Validate Identity Provider Certificate' option is disabled (unchecked), improper verification of signatures in PAN-OS SAML authentication enables an unauthenticated network-based attacker to access protected resources. The attacker must have network access to the vulnerable server to exploit this vulnerability. This issue affects PAN-OS 9.1 versions earlier than PAN-OS 9.1.3; PAN-OS 9.0 versions earlier than PAN-OS 9.0.9; PAN-OS 8.1 versions earlier than PAN-OS 8.1.15, and all versions of PAN-OS 8.0 (EOL). This issue does not affect PAN-OS 7.1. This issue cannot be exploited if SAML is not used for authentication. This issue cannot be exploited if the 'Validate Identity Provider Certificate' option is enabled (checked) in the SAML Identity Provider Server Profile. Resources that can be protected by SAML-based single sign-on (SSO) authentication are: GlobalProtect Gateway, GlobalProtect Portal, GlobalProtect Clientless VPN, Authentication and Captive Portal, PAN-OS next-generation firewalls (PA-Series, VM-Series) and Panorama web interfaces, Prisma Access In the case of GlobalProtect Gateways, GlobalProtect Portal, Clientless VPN, Captive Portal, and Prisma Access, an unauthenticated attacker with network access to the affected servers can gain access to protected resources if allowed by configured authentication and Security policies. There is no impact on the integrity and availability of the gateway, portal or VPN server. An attacker cannot inspect or tamper with sessions of regular users. In the worst case, this is a critical severity vulnerability with a CVSS Base Score of 10.0 (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:N). In the case of PAN-OS and Panorama web interfaces, this issue allows an unauthenticated attacker with network access to the PAN-OS or Panorama web interfaces to log in as an administrator and perform administrative actions. In the worst-case scenario, this is a critical severity vulnerability with a CVSS Base Score of 10.0 (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H). If the web interfaces are only accessible to a restricted management network, then the issue is lowered to a CVSS Base Score of 9.6 (CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H). Palo Alto Networks is not aware of any malicious attempts to exploit this vulnerability.
CVE-2020-1464 1 Microsoft 22 Windows 10, Windows 10 1507, Windows 10 1607 and 19 more 2025-10-22 7.8 High
A spoofing vulnerability exists when Windows incorrectly validates file signatures. An attacker who successfully exploited this vulnerability could bypass security features and load improperly signed files. In an attack scenario, an attacker could bypass security features intended to prevent improperly signed files from being loaded. The update addresses the vulnerability by correcting how Windows validates file signatures.
CVE-2025-47827 2 Igel, Microsoft 16 Igel Os, Windows 10 1507, Windows 10 1607 and 13 more 2025-10-21 4.6 Medium
In IGEL OS before 11, Secure Boot can be bypassed because the igel-flash-driver module improperly verifies a cryptographic signature. Ultimately, a crafted root filesystem can be mounted from an unverified SquashFS image.
CVE-2025-55039 1 Apache 1 Spark 2025-10-20 6.5 Medium
This issue affects Apache Spark versions before 3.4.4, 3.5.2 and 4.0.0. Apache Spark versions before 4.0.0, 3.5.2 and 3.4.4 use an insecure default network encryption cipher for RPC communication between nodes. When spark.network.crypto.enabled is set to true (it is set to false by default), but spark.network.crypto.cipher is not explicitly configured, Spark defaults to AES in CTR mode (AES/CTR/NoPadding), which provides encryption without authentication. This vulnerability allows a man-in-the-middle attacker to modify encrypted RPC traffic undetected by flipping bits in ciphertext, potentially compromising heartbeat messages or application data and affecting the integrity of Spark workflows. To mitigate this issue, users should either configure spark.network.crypto.cipher to AES/GCM/NoPadding to enable authenticated encryption or enable SSL encryption by setting spark.ssl.enabled to true, which provides stronger transport security.
CVE-2024-38069 1 Microsoft 12 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 9 more 2025-10-14 7 High
Windows Enroll Engine Security Feature Bypass Vulnerability
CVE-2024-0567 5 Debian, Fedoraproject, Gnu and 2 more 9 Debian Linux, Fedora, Gnutls and 6 more 2025-10-10 7.5 High
A vulnerability was found in GnuTLS, where a cockpit (which uses gnuTLS) rejects a certificate chain with distributed trust. This issue occurs when validating a certificate chain with cockpit-certificate-ensure. This flaw allows an unauthenticated, remote client or attacker to initiate a denial of service attack.
CVE-2023-3347 3 Fedoraproject, Redhat, Samba 4 Fedora, Enterprise Linux, Storage and 1 more 2025-10-09 5.9 Medium
A vulnerability was found in Samba's SMB2 packet signing mechanism. The SMB2 packet signing is not enforced if an admin configured "server signing = required" or for SMB2 connections to Domain Controllers where SMB2 packet signing is mandatory. This flaw allows an attacker to perform attacks, such as a man-in-the-middle attack, by intercepting the network traffic and modifying the SMB2 messages between client and server, affecting the integrity of the data.
CVE-2025-59334 1 Mohammadzain2008 1 Linkr 2025-10-08 9.7 Critical
Linkr is a lightweight file delivery system that downloads files from a webserver. Linkr versions through 2.0.0 do not verify the integrity or authenticity of .linkr manifest files before using their contents, allowing a tampered manifest to inject arbitrary file entries into a package distribution. An attacker can modify a generated .linkr manifest (for example by adding a new entry with a malicious URL) and when a user runs the extract command the client downloads the attacker-supplied file without verification. This enables arbitrary file injection and creates a potential path to remote code execution if a downloaded malicious binary or script is later executed. Version 2.0.1 adds a manifest integrity check that compares the checksum of the original author-created manifest to the one being extracted and aborts on mismatch, warning if no original manifest is hosted. Users should update to 2.0.1 or later. As a workaround prior to updating, use only trusted .linkr manifests, manually verify manifest integrity, and host manifests on trusted servers.
CVE-2023-5347 1 Korenix 84 Jetnet 4508, Jetnet 4508-w, Jetnet 4508-w Firmware and 81 more 2025-10-08 9.8 Critical
An Improper Verification of Cryptographic Signature vulnerability in the update process of Korenix JetNet Series allows replacing the whole operating system including Trusted Executables. This issue affects JetNet devices older than firmware version 2024/01.
CVE-2025-43903 1 Freedesktop 1 Poppler 2025-10-06 4.3 Medium
NSSCryptoSignBackend.cc in Poppler before 25.04.0 does not verify the adbe.pkcs7.sha1 signatures on documents, resulting in potential signature forgeries.
CVE-2025-9485 2 Oauth Client Single Sign On Project, Wordpress 2 Oauth Client Single Sign On, Wordpress 2025-10-06 9.8 Critical
The OAuth Single Sign On – SSO (OAuth Client) plugin for WordPress is vulnerable to Improper Verification of Cryptographic Signature in versions up to, and including, 6.26.12. This is due to the plugin performing unsafe JWT token processing without verification or validation in the `get_resource_owner_from_id_token` function. This makes it possible for unauthenticated attackers to bypass authentication and gain access to any existing user account - including administrators in certain configurations - or to create arbitrary subscriber-level accounts.