Filtered by vendor Nodejs
Subscriptions
Filtered by product Node.js
Subscriptions
Total
160 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2013-6668 | 4 Debian, Google, Nodejs and 1 more | 7 Debian Linux, Chrome, V8 and 4 more | 2025-04-12 | N/A |
| Multiple unspecified vulnerabilities in Google V8 before 3.24.35.10, as used in Google Chrome before 33.0.1750.146, allow attackers to cause a denial of service or possibly have other impact via unknown vectors. | ||||
| CVE-2016-6306 | 7 Canonical, Debian, Hp and 4 more | 11 Ubuntu Linux, Debian Linux, Icewall Federation Agent and 8 more | 2025-04-12 | 5.9 Medium |
| The certificate parser in OpenSSL before 1.0.1u and 1.0.2 before 1.0.2i might allow remote attackers to cause a denial of service (out-of-bounds read) via crafted certificate operations, related to s3_clnt.c and s3_srvr.c. | ||||
| CVE-2015-3193 | 3 Canonical, Nodejs, Openssl | 3 Ubuntu Linux, Node.js, Openssl | 2025-04-12 | 7.5 High |
| The Montgomery squaring implementation in crypto/bn/asm/x86_64-mont5.pl in OpenSSL 1.0.2 before 1.0.2e on the x86_64 platform, as used by the BN_mod_exp function, mishandles carry propagation and produces incorrect output, which makes it easier for remote attackers to obtain sensitive private-key information via an attack against use of a (1) Diffie-Hellman (DH) or (2) Diffie-Hellman Ephemeral (DHE) ciphersuite. | ||||
| CVE-2014-0224 | 9 Fedoraproject, Filezilla-project, Mariadb and 6 more | 23 Fedora, Filezilla Server, Mariadb and 20 more | 2025-04-12 | 7.4 High |
| OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability. | ||||
| CVE-2016-7099 | 3 Nodejs, Redhat, Suse | 3 Node.js, Rhel Software Collections, Linux Enterprise | 2025-04-12 | N/A |
| The tls.checkServerIdentity function in Node.js 0.10.x before 0.10.47, 0.12.x before 0.12.16, 4.x before 4.6.0, and 6.x before 6.7.0 does not properly handle wildcards in name fields of X.509 certificates, which allows man-in-the-middle attackers to spoof servers via a crafted certificate. | ||||
| CVE-2015-5380 | 3 Google, Iojs, Nodejs | 3 V8, Io.js, Node.js | 2025-04-12 | N/A |
| The Utf8DecoderBase::WriteUtf16Slow function in unicode-decoder.cc in Google V8, as used in Node.js before 0.12.6, io.js before 1.8.3 and 2.x before 2.3.3, and other products, does not verify that there is memory available for a UTF-16 surrogate pair, which allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via a crafted byte sequence. | ||||
| CVE-2015-0278 | 3 Fedoraproject, Libuv Project, Nodejs | 3 Fedora, Libuv, Node.js | 2025-04-12 | N/A |
| libuv before 0.10.34 does not properly drop group privileges, which allows context-dependent attackers to gain privileges via unspecified vectors. | ||||
| CVE-2016-3956 | 3 Ibm, Nodejs, Npmjs | 3 Sdk, Node.js, Npm | 2025-04-12 | 7.5 High |
| The CLI in npm before 2.15.1 and 3.x before 3.8.3, as used in Node.js 0.10 before 0.10.44, 0.12 before 0.12.13, 4 before 4.4.2, and 5 before 5.10.0, includes bearer tokens with arbitrary requests, which allows remote HTTP servers to obtain sensitive information by reading Authorization headers. | ||||
| CVE-2016-5180 | 6 C-ares, C-ares Project, Canonical and 3 more | 6 C-ares, C-ares, Ubuntu Linux and 3 more | 2025-04-12 | 9.8 Critical |
| Heap-based buffer overflow in the ares_create_query function in c-ares 1.x before 1.12.0 allows remote attackers to cause a denial of service (out-of-bounds write) or possibly execute arbitrary code via a hostname with an escaped trailing dot. | ||||
| CVE-2016-0702 | 5 Canonical, Debian, Nodejs and 2 more | 6 Ubuntu Linux, Debian Linux, Node.js and 3 more | 2025-04-12 | 5.1 Medium |
| The MOD_EXP_CTIME_COPY_FROM_PREBUF function in crypto/bn/bn_exp.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not properly consider cache-bank access times during modular exponentiation, which makes it easier for local users to discover RSA keys by running a crafted application on the same Intel Sandy Bridge CPU core as a victim and leveraging cache-bank conflicts, aka a "CacheBleed" attack. | ||||
| CVE-2016-2216 | 2 Fedoraproject, Nodejs | 2 Fedora, Node.js | 2025-04-12 | N/A |
| The HTTP header parsing code in Node.js 0.10.x before 0.10.42, 0.11.6 through 0.11.16, 0.12.x before 0.12.10, 4.x before 4.3.0, and 5.x before 5.6.0 allows remote attackers to bypass an HTTP response-splitting protection mechanism via UTF-8 encoded Unicode characters in the HTTP header, as demonstrated by %c4%8d%c4%8a. | ||||
| CVE-2016-5172 | 4 Debian, Google, Nodejs and 1 more | 4 Debian Linux, Chrome, Node.js and 1 more | 2025-04-12 | 6.5 Medium |
| The parser in Google V8, as used in Google Chrome before 53.0.2785.113, mishandles scopes, which allows remote attackers to obtain sensitive information from arbitrary memory locations via crafted JavaScript code. | ||||
| CVE-2016-5325 | 3 Nodejs, Redhat, Suse | 4 Node.js, Openshift, Rhel Software Collections and 1 more | 2025-04-12 | N/A |
| CRLF injection vulnerability in the ServerResponse#writeHead function in Node.js 0.10.x before 0.10.47, 0.12.x before 0.12.16, 4.x before 4.6.0, and 6.x before 6.7.0 allows remote attackers to inject arbitrary HTTP headers and conduct HTTP response splitting attacks via the reason argument. | ||||
| CVE-2016-6304 | 4 Nodejs, Novell, Openssl and 1 more | 11 Node.js, Suse Linux Enterprise Module For Web Scripting, Openssl and 8 more | 2025-04-12 | 7.5 High |
| Multiple memory leaks in t1_lib.c in OpenSSL before 1.0.1u, 1.0.2 before 1.0.2i, and 1.1.0 before 1.1.0a allow remote attackers to cause a denial of service (memory consumption) via large OCSP Status Request extensions. | ||||
| CVE-2013-2882 | 4 Debian, Google, Nodejs and 1 more | 6 Debian Linux, Chrome, Node.js and 3 more | 2025-04-11 | N/A |
| Google V8, as used in Google Chrome before 28.0.1500.95, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors that leverage "type confusion." | ||||
| CVE-2023-23936 | 2 Nodejs, Redhat | 4 Node.js, Undici, Enterprise Linux and 1 more | 2025-03-10 | 6.5 Medium |
| Undici is an HTTP/1.1 client for Node.js. Starting with version 2.0.0 and prior to version 5.19.1, the undici library does not protect `host` HTTP header from CRLF injection vulnerabilities. This issue is patched in Undici v5.19.1. As a workaround, sanitize the `headers.host` string before passing to undici. | ||||
| CVE-2025-23088 | 1 Nodejs | 1 Node.js | 2025-03-01 | 8.8 High |
| This Record was REJECTED after determining it is not in compliance with CVE Program requirements regarding assignment for vulnerabilities | ||||
| CVE-2019-9517 | 12 Apache, Apple, Canonical and 9 more | 28 Http Server, Traffic Server, Mac Os X and 25 more | 2025-01-14 | 7.5 High |
| Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both. | ||||
| CVE-2019-9513 | 12 Apache, Apple, Canonical and 9 more | 25 Traffic Server, Mac Os X, Swiftnio and 22 more | 2025-01-14 | 7.5 High |
| Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU. | ||||
| CVE-2019-9511 | 12 Apache, Apple, Canonical and 9 more | 29 Traffic Server, Mac Os X, Swiftnio and 26 more | 2025-01-14 | 7.5 High |
| Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | ||||