Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 14538 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-49611 2 Linux, Redhat 2 Linux Kernel, Rhel Eus 2025-10-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/speculation: Fill RSB on vmexit for IBRS Prevent RSB underflow/poisoning attacks with RSB. While at it, add a bunch of comments to attempt to document the current state of tribal knowledge about RSB attacks and what exactly is being mitigated.
CVE-2022-49610 1 Linux 1 Linux Kernel 2025-10-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: VMX: Prevent RSB underflow before vmenter On VMX, there are some balanced returns between the time the guest's SPEC_CTRL value is written, and the vmenter. Balanced returns (matched by a preceding call) are usually ok, but it's at least theoretically possible an NMI with a deep call stack could empty the RSB before one of the returns. For maximum paranoia, don't allow *any* returns (balanced or otherwise) between the SPEC_CTRL write and the vmenter. [ bp: Fix 32-bit build. ]
CVE-2022-49606 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: Fix sleep from invalid context BUG Taking the qos_mutex to process RoCEv2 QP's on netdev events causes a kernel splat. Fix this by removing the handling for RoCEv2 in irdma_cm_teardown_connections that uses the mutex. This handling is only needed for iWARP to avoid having connections established while the link is down or having connections remain functional after the IP address is removed. BUG: sleeping function called from invalid context at kernel/locking/mutex. Call Trace: kernel: dump_stack+0x66/0x90 kernel: ___might_sleep.cold.92+0x8d/0x9a kernel: mutex_lock+0x1c/0x40 kernel: irdma_cm_teardown_connections+0x28e/0x4d0 [irdma] kernel: ? check_preempt_curr+0x7a/0x90 kernel: ? select_idle_sibling+0x22/0x3c0 kernel: ? select_task_rq_fair+0x94c/0xc90 kernel: ? irdma_exec_cqp_cmd+0xc27/0x17c0 [irdma] kernel: ? __wake_up_common+0x7a/0x190 kernel: irdma_if_notify+0x3cc/0x450 [irdma] kernel: ? sched_clock_cpu+0xc/0xb0 kernel: irdma_inet6addr_event+0xc6/0x150 [irdma]
CVE-2022-49605 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: igc: Reinstate IGC_REMOVED logic and implement it properly The initially merged version of the igc driver code (via commit 146740f9abc4, "igc: Add support for PF") contained the following IGC_REMOVED checks in the igc_rd32/wr32() MMIO accessors: u32 igc_rd32(struct igc_hw *hw, u32 reg) { u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); u32 value = 0; if (IGC_REMOVED(hw_addr)) return ~value; value = readl(&hw_addr[reg]); /* reads should not return all F's */ if (!(~value) && (!reg || !(~readl(hw_addr)))) hw->hw_addr = NULL; return value; } And: #define wr32(reg, val) \ do { \ u8 __iomem *hw_addr = READ_ONCE((hw)->hw_addr); \ if (!IGC_REMOVED(hw_addr)) \ writel((val), &hw_addr[(reg)]); \ } while (0) E.g. igb has similar checks in its MMIO accessors, and has a similar macro E1000_REMOVED, which is implemented as follows: #define E1000_REMOVED(h) unlikely(!(h)) These checks serve to detect and take note of an 0xffffffff MMIO read return from the device, which can be caused by a PCIe link flap or some other kind of PCI bus error, and to avoid performing MMIO reads and writes from that point onwards. However, the IGC_REMOVED macro was not originally implemented: #ifndef IGC_REMOVED #define IGC_REMOVED(a) (0) #endif /* IGC_REMOVED */ This led to the IGC_REMOVED logic to be removed entirely in a subsequent commit (commit 3c215fb18e70, "igc: remove IGC_REMOVED function"), with the rationale that such checks matter only for virtualization and that igc does not support virtualization -- but a PCIe device can become detached even without virtualization being in use, and without proper checks, a PCIe bus error affecting an igc adapter will lead to various NULL pointer dereferences, as the first access after the error will set hw->hw_addr to NULL, and subsequent accesses will blindly dereference this now-NULL pointer. This patch reinstates the IGC_REMOVED checks in igc_rd32/wr32(), and implements IGC_REMOVED the way it is done for igb, by checking for the unlikely() case of hw_addr being NULL. This change prevents the oopses seen when a PCIe link flap occurs on an igc adapter.
CVE-2023-53696 1 Linux 1 Linux Kernel 2025-10-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix memory leak in qla2x00_probe_one() There is a memory leak reported by kmemleak: unreferenced object 0xffffc900003f0000 (size 12288): comm "modprobe", pid 19117, jiffies 4299751452 (age 42490.264s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000629261a8>] __vmalloc_node_range+0xe56/0x1110 [<0000000001906886>] __vmalloc_node+0xbd/0x150 [<000000005bb4dc34>] vmalloc+0x25/0x30 [<00000000a2dc1194>] qla2x00_create_host+0x7a0/0xe30 [qla2xxx] [<0000000062b14b47>] qla2x00_probe_one+0x2eb8/0xd160 [qla2xxx] [<00000000641ccc04>] local_pci_probe+0xeb/0x1a0 The root cause is traced to an error-handling path in qla2x00_probe_one() when the adapter "base_vha" initialize failed. The fab_scan_rp "scan.l" is used to record the port information and it is allocated in qla2x00_create_host(). However, it is not released in the error handling path "probe_failed". Fix this by freeing the memory of "scan.l" when an error occurs in the adapter initialization process.
CVE-2022-50564 1 Linux 1 Linux Kernel 2025-10-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/netiucv: Fix return type of netiucv_tx() With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG), indirect call targets are validated against the expected function pointer prototype to make sure the call target is valid to help mitigate ROP attacks. If they are not identical, there is a failure at run time, which manifests as either a kernel panic or thread getting killed. A proposed warning in clang aims to catch these at compile time, which reveals: drivers/s390/net/netiucv.c:1854:21: error: incompatible function pointer types initializing 'netdev_tx_t (*)(struct sk_buff *, struct net_device *)' (aka 'enum netdev_tx (*)(struct sk_buff *, struct net_device *)') with an expression of type 'int (struct sk_buff *, struct net_device *)' [-Werror,-Wincompatible-function-pointer-types-strict] .ndo_start_xmit = netiucv_tx, ^~~~~~~~~~ ->ndo_start_xmit() in 'struct net_device_ops' expects a return type of 'netdev_tx_t', not 'int'. Adjust the return type of netiucv_tx() to match the prototype's to resolve the warning and potential CFI failure, should s390 select ARCH_SUPPORTS_CFI_CLANG in the future. Additionally, while in the area, remove a comment block that is no longer relevant.
CVE-2022-50577 1 Linux 1 Linux Kernel 2025-10-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ima: Fix memory leak in __ima_inode_hash() Commit f3cc6b25dcc5 ("ima: always measure and audit files in policy") lets measurement or audit happen even if the file digest cannot be calculated. As a result, iint->ima_hash could have been allocated despite ima_collect_measurement() returning an error. Since ima_hash belongs to a temporary inode metadata structure, declared at the beginning of __ima_inode_hash(), just add a kfree() call if ima_collect_measurement() returns an error different from -ENOMEM (in that case, ima_hash should not have been allocated).
CVE-2022-50582 1 Linux 1 Linux Kernel 2025-10-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: regulator: core: Prevent integer underflow By using a ratio of delay to poll_enabled_time that is not integer time_remaining underflows and does not exit the loop as expected. As delay could be derived from DT and poll_enabled_time is defined in the driver this can easily happen. Use a signed iterator to make sure that the loop exits once the remaining time is negative.
CVE-2023-53695 1 Linux 1 Linux Kernel 2025-10-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: udf: Detect system inodes linked into directory hierarchy When UDF filesystem is corrupted, hidden system inodes can be linked into directory hierarchy which is an avenue for further serious corruption of the filesystem and kernel confusion as noticed by syzbot fuzzed images. Refuse to access system inodes linked into directory hierarchy and vice versa.
CVE-2022-50560 1 Linux 1 Linux Kernel 2025-10-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/meson: explicitly remove aggregate driver at module unload time Because component_master_del wasn't being called when unloading the meson_drm module, the aggregate device would linger forever in the global aggregate_devices list. That means when unloading and reloading the meson_dw_hdmi module, component_add would call into try_to_bring_up_aggregate_device and find the unbound meson_drm aggregate device. This would in turn dereference some of the aggregate_device's struct entries which point to memory automatically freed by the devres API when unbinding the aggregate device from meson_drv_unbind, and trigger an use-after-free bug: [ +0.000014] ============================================================= [ +0.000007] BUG: KASAN: use-after-free in find_components+0x468/0x500 [ +0.000017] Read of size 8 at addr ffff000006731688 by task modprobe/2536 [ +0.000018] CPU: 4 PID: 2536 Comm: modprobe Tainted: G C O 5.19.0-rc6-lrmbkasan+ #1 [ +0.000010] Hardware name: Hardkernel ODROID-N2Plus (DT) [ +0.000008] Call trace: [ +0.000005] dump_backtrace+0x1ec/0x280 [ +0.000011] show_stack+0x24/0x80 [ +0.000007] dump_stack_lvl+0x98/0xd4 [ +0.000010] print_address_description.constprop.0+0x80/0x520 [ +0.000011] print_report+0x128/0x260 [ +0.000007] kasan_report+0xb8/0xfc [ +0.000007] __asan_report_load8_noabort+0x3c/0x50 [ +0.000009] find_components+0x468/0x500 [ +0.000008] try_to_bring_up_aggregate_device+0x64/0x390 [ +0.000009] __component_add+0x1dc/0x49c [ +0.000009] component_add+0x20/0x30 [ +0.000008] meson_dw_hdmi_probe+0x28/0x34 [meson_dw_hdmi] [ +0.000013] platform_probe+0xd0/0x220 [ +0.000008] really_probe+0x3ac/0xa80 [ +0.000008] __driver_probe_device+0x1f8/0x400 [ +0.000008] driver_probe_device+0x68/0x1b0 [ +0.000008] __driver_attach+0x20c/0x480 [ +0.000009] bus_for_each_dev+0x114/0x1b0 [ +0.000007] driver_attach+0x48/0x64 [ +0.000009] bus_add_driver+0x390/0x564 [ +0.000007] driver_register+0x1a8/0x3e4 [ +0.000009] __platform_driver_register+0x6c/0x94 [ +0.000007] meson_dw_hdmi_platform_driver_init+0x30/0x1000 [meson_dw_hdmi] [ +0.000014] do_one_initcall+0xc4/0x2b0 [ +0.000008] do_init_module+0x154/0x570 [ +0.000010] load_module+0x1a78/0x1ea4 [ +0.000008] __do_sys_init_module+0x184/0x1cc [ +0.000008] __arm64_sys_init_module+0x78/0xb0 [ +0.000008] invoke_syscall+0x74/0x260 [ +0.000008] el0_svc_common.constprop.0+0xcc/0x260 [ +0.000009] do_el0_svc+0x50/0x70 [ +0.000008] el0_svc+0x68/0x1a0 [ +0.000009] el0t_64_sync_handler+0x11c/0x150 [ +0.000009] el0t_64_sync+0x18c/0x190 [ +0.000014] Allocated by task 902: [ +0.000007] kasan_save_stack+0x2c/0x5c [ +0.000009] __kasan_kmalloc+0x90/0xd0 [ +0.000007] __kmalloc_node+0x240/0x580 [ +0.000010] memcg_alloc_slab_cgroups+0xa4/0x1ac [ +0.000010] memcg_slab_post_alloc_hook+0xbc/0x4c0 [ +0.000008] kmem_cache_alloc_node+0x1d0/0x490 [ +0.000009] __alloc_skb+0x1d4/0x310 [ +0.000010] alloc_skb_with_frags+0x8c/0x620 [ +0.000008] sock_alloc_send_pskb+0x5ac/0x6d0 [ +0.000010] unix_dgram_sendmsg+0x2e0/0x12f0 [ +0.000010] sock_sendmsg+0xcc/0x110 [ +0.000007] sock_write_iter+0x1d0/0x304 [ +0.000008] new_sync_write+0x364/0x460 [ +0.000007] vfs_write+0x420/0x5ac [ +0.000008] ksys_write+0x19c/0x1f0 [ +0.000008] __arm64_sys_write+0x78/0xb0 [ +0.000007] invoke_syscall+0x74/0x260 [ +0.000008] el0_svc_common.constprop.0+0x1a8/0x260 [ +0.000009] do_el0_svc+0x50/0x70 [ +0.000007] el0_svc+0x68/0x1a0 [ +0.000008] el0t_64_sync_handler+0x11c/0x150 [ +0.000008] el0t_64_sync+0x18c/0x190 [ +0.000013] Freed by task 2509: [ +0.000008] kasan_save_stack+0x2c/0x5c [ +0.000007] kasan_set_track+0x2c/0x40 [ +0.000008] kasan_set_free_info+0x28/0x50 [ +0.000008] ____kasan_slab_free+0x128/0x1d4 [ +0.000008] __kasan_slab_free+0x18/0x24 [ +0.000007] slab_free_freelist_hook+0x108/0x230 [ +0.000010] ---truncated---
CVE-2022-50570 1 Linux 1 Linux Kernel 2025-10-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: platform/chrome: fix memory corruption in ioctl If "s_mem.bytes" is larger than the buffer size it leads to memory corruption.
CVE-2022-50569 1 Linux 1 Linux Kernel 2025-10-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: xfrm: Update ipcomp_scratches with NULL when freed Currently if ipcomp_alloc_scratches() fails to allocate memory ipcomp_scratches holds obsolete address. So when we try to free the percpu scratches using ipcomp_free_scratches() it tries to vfree non existent vm area. Described below: static void * __percpu *ipcomp_alloc_scratches(void) { ... scratches = alloc_percpu(void *); if (!scratches) return NULL; ipcomp_scratches does not know about this allocation failure. Therefore holding the old obsolete address. ... } So when we free, static void ipcomp_free_scratches(void) { ... scratches = ipcomp_scratches; Assigning obsolete address from ipcomp_scratches if (!scratches) return; for_each_possible_cpu(i) vfree(*per_cpu_ptr(scratches, i)); Trying to free non existent page, causing warning: trying to vfree existent vm area. ... } Fix this breakage by updating ipcomp_scrtches with NULL when scratches is freed
CVE-2022-50557 1 Linux 1 Linux Kernel 2025-10-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: pinctrl: thunderbay: fix possible memory leak in thunderbay_build_functions() The thunderbay_add_functions() will free memory of thunderbay_funcs when everything is ok, but thunderbay_funcs will not be freed when thunderbay_add_functions() fails, then there will be a memory leak, so we need to add kfree() when thunderbay_add_functions() fails to fix it. In addition, doing some cleaner works, moving kfree(funcs) from thunderbay_add_functions() to thunderbay_build_functions().
CVE-2023-53692 1 Linux 1 Linux Kernel 2025-10-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: fix use-after-free read in ext4_find_extent for bigalloc + inline Syzbot found the following issue: loop0: detected capacity change from 0 to 2048 EXT4-fs (loop0): mounted filesystem 00000000-0000-0000-0000-000000000000 without journal. Quota mode: none. ================================================================== BUG: KASAN: use-after-free in ext4_ext_binsearch_idx fs/ext4/extents.c:768 [inline] BUG: KASAN: use-after-free in ext4_find_extent+0x76e/0xd90 fs/ext4/extents.c:931 Read of size 4 at addr ffff888073644750 by task syz-executor420/5067 CPU: 0 PID: 5067 Comm: syz-executor420 Not tainted 6.2.0-rc1-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x290 lib/dump_stack.c:106 print_address_description+0x74/0x340 mm/kasan/report.c:306 print_report+0x107/0x1f0 mm/kasan/report.c:417 kasan_report+0xcd/0x100 mm/kasan/report.c:517 ext4_ext_binsearch_idx fs/ext4/extents.c:768 [inline] ext4_find_extent+0x76e/0xd90 fs/ext4/extents.c:931 ext4_clu_mapped+0x117/0x970 fs/ext4/extents.c:5809 ext4_insert_delayed_block fs/ext4/inode.c:1696 [inline] ext4_da_map_blocks fs/ext4/inode.c:1806 [inline] ext4_da_get_block_prep+0x9e8/0x13c0 fs/ext4/inode.c:1870 ext4_block_write_begin+0x6a8/0x2290 fs/ext4/inode.c:1098 ext4_da_write_begin+0x539/0x760 fs/ext4/inode.c:3082 generic_perform_write+0x2e4/0x5e0 mm/filemap.c:3772 ext4_buffered_write_iter+0x122/0x3a0 fs/ext4/file.c:285 ext4_file_write_iter+0x1d0/0x18f0 call_write_iter include/linux/fs.h:2186 [inline] new_sync_write fs/read_write.c:491 [inline] vfs_write+0x7dc/0xc50 fs/read_write.c:584 ksys_write+0x177/0x2a0 fs/read_write.c:637 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f4b7a9737b9 RSP: 002b:00007ffc5cac3668 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f4b7a9737b9 RDX: 00000000175d9003 RSI: 0000000020000200 RDI: 0000000000000004 RBP: 00007f4b7a933050 R08: 0000000000000000 R09: 0000000000000000 R10: 000000000000079f R11: 0000000000000246 R12: 00007f4b7a9330e0 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 </TASK> Above issue is happens when enable bigalloc and inline data feature. As commit 131294c35ed6 fixed delayed allocation bug in ext4_clu_mapped for bigalloc + inline. But it only resolved issue when has inline data, if inline data has been converted to extent(ext4_da_convert_inline_data_to_extent) before writepages, there is no EXT4_STATE_MAY_INLINE_DATA flag. However i_data is still store inline data in this scene. Then will trigger UAF when find extent. To resolve above issue, there is need to add judge "ext4_has_inline_data(inode)" in ext4_clu_mapped().
CVE-2023-53697 1 Linux 1 Linux Kernel 2025-10-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: nvdimm: Fix memleak of pmu attr_groups in unregister_nvdimm_pmu() Memory pointed by 'nd_pmu->pmu.attr_groups' is allocated in function 'register_nvdimm_pmu' and is lost after 'kfree(nd_pmu)' call in function 'unregister_nvdimm_pmu'.
CVE-2022-50580 1 Linux 1 Linux Kernel 2025-10-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: blk-throttle: prevent overflow while calculating wait time There is a problem found by code review in tg_with_in_bps_limit() that 'bps_limit * jiffy_elapsed_rnd' might overflow. Fix the problem by calling mul_u64_u64_div_u64() instead.
CVE-2022-50568 1 Linux 1 Linux Kernel 2025-10-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_hid: fix f_hidg lifetime vs cdev The embedded struct cdev does not have its lifetime correctly tied to the enclosing struct f_hidg, so there is a use-after-free if /dev/hidgN is held open while the gadget is deleted. This can readily be replicated with libusbgx's example programs (for conciseness - operating directly via configfs is equivalent): gadget-hid exec 3<> /dev/hidg0 gadget-vid-pid-remove exec 3<&- Pull the existing device up in to struct f_hidg and make use of the cdev_device_{add,del}() helpers. This changes the lifetime of the device object to match struct f_hidg, but note that it is still added and deleted at the same time.
CVE-2022-50567 1 Linux 1 Linux Kernel 2025-10-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fs: jfs: fix shift-out-of-bounds in dbAllocAG Syzbot found a crash : UBSAN: shift-out-of-bounds in dbAllocAG. The underlying bug is the missing check of bmp->db_agl2size. The field can be greater than 64 and trigger the shift-out-of-bounds. Fix this bug by adding a check of bmp->db_agl2size in dbMount since this field is used in many following functions. The upper bound for this field is L2MAXL2SIZE - L2MAXAG, thanks for the help of Dave Kleikamp. Note that, for maintenance, I reorganized error handling code of dbMount.
CVE-2023-53693 1 Linux 1 Linux Kernel 2025-10-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: USB: gadget: Fix the memory leak in raw_gadget driver Currently, increasing raw_dev->count happens before invoke the raw_queue_event(), if the raw_queue_event() return error, invoke raw_release() will not trigger the dev_free() to be called. [ 268.905865][ T5067] raw-gadget.0 gadget.0: failed to queue event [ 268.912053][ T5067] udc dummy_udc.0: failed to start USB Raw Gadget: -12 [ 268.918885][ T5067] raw-gadget.0: probe of gadget.0 failed with error -12 [ 268.925956][ T5067] UDC core: USB Raw Gadget: couldn't find an available UDC or it's busy [ 268.934657][ T5067] misc raw-gadget: fail, usb_gadget_register_driver returned -16 BUG: memory leak [<ffffffff8154bf94>] kmalloc_trace+0x24/0x90 mm/slab_common.c:1076 [<ffffffff8347eb55>] kmalloc include/linux/slab.h:582 [inline] [<ffffffff8347eb55>] kzalloc include/linux/slab.h:703 [inline] [<ffffffff8347eb55>] dev_new drivers/usb/gadget/legacy/raw_gadget.c:191 [inline] [<ffffffff8347eb55>] raw_open+0x45/0x110 drivers/usb/gadget/legacy/raw_gadget.c:385 [<ffffffff827d1d09>] misc_open+0x1a9/0x1f0 drivers/char/misc.c:165 [<ffffffff8154bf94>] kmalloc_trace+0x24/0x90 mm/slab_common.c:1076 [<ffffffff8347cd2f>] kmalloc include/linux/slab.h:582 [inline] [<ffffffff8347cd2f>] raw_ioctl_init+0xdf/0x410 drivers/usb/gadget/legacy/raw_gadget.c:460 [<ffffffff8347dfe9>] raw_ioctl+0x5f9/0x1120 drivers/usb/gadget/legacy/raw_gadget.c:1250 [<ffffffff81685173>] vfs_ioctl fs/ioctl.c:51 [inline] [<ffffffff8154bf94>] kmalloc_trace+0x24/0x90 mm/slab_common.c:1076 [<ffffffff833ecc6a>] kmalloc include/linux/slab.h:582 [inline] [<ffffffff833ecc6a>] kzalloc include/linux/slab.h:703 [inline] [<ffffffff833ecc6a>] dummy_alloc_request+0x5a/0xe0 drivers/usb/gadget/udc/dummy_hcd.c:665 [<ffffffff833e9132>] usb_ep_alloc_request+0x22/0xd0 drivers/usb/gadget/udc/core.c:196 [<ffffffff8347f13d>] gadget_bind+0x6d/0x370 drivers/usb/gadget/legacy/raw_gadget.c:292 This commit therefore invoke kref_get() under the condition that raw_queue_event() return success.
CVE-2022-50575 1 Linux 1 Linux Kernel 2025-10-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: xen/privcmd: Fix a possible warning in privcmd_ioctl_mmap_resource() As 'kdata.num' is user-controlled data, if user tries to allocate memory larger than(>=) MAX_ORDER, then kcalloc() will fail, it creates a stack trace and messes up dmesg with a warning. Call trace: -> privcmd_ioctl --> privcmd_ioctl_mmap_resource Add __GFP_NOWARN in order to avoid too large allocation warning. This is detected by static analysis using smatch.