Total
33315 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2024-46823 | 1 Linux | 1 Linux Kernel | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: kunit/overflow: Fix UB in overflow_allocation_test The 'device_name' array doesn't exist out of the 'overflow_allocation_test' function scope. However, it is being used as a driver name when calling 'kunit_driver_create' from 'kunit_device_register'. It produces the kernel panic with KASAN enabled. Since this variable is used in one place only, remove it and pass the device name into kunit_device_register directly as an ascii string. | ||||
| CVE-2024-46816 | 1 Linux | 1 Linux Kernel | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Stop amdgpu_dm initialize when link nums greater than max_links [Why] Coverity report OVERRUN warning. There are only max_links elements within dc->links. link count could up to AMDGPU_DM_MAX_DISPLAY_INDEX 31. [How] Make sure link count less than max_links. | ||||
| CVE-2024-43840 | 1 Linux | 1 Linux Kernel | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix trampoline for BPF_TRAMP_F_CALL_ORIG When BPF_TRAMP_F_CALL_ORIG is set, the trampoline calls __bpf_tramp_enter() and __bpf_tramp_exit() functions, passing them the struct bpf_tramp_image *im pointer as an argument in R0. The trampoline generation code uses emit_addr_mov_i64() to emit instructions for moving the bpf_tramp_image address into R0, but emit_addr_mov_i64() assumes the address to be in the vmalloc() space and uses only 48 bits. Because bpf_tramp_image is allocated using kzalloc(), its address can use more than 48-bits, in this case the trampoline will pass an invalid address to __bpf_tramp_enter/exit() causing a kernel crash. Fix this by using emit_a64_mov_i64() in place of emit_addr_mov_i64() as it can work with addresses that are greater than 48-bits. | ||||
| CVE-2024-43831 | 1 Linux | 1 Linux Kernel | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: Handle invalid decoder vsi Handle an invalid decoder vsi in vpu_dec_init to ensure the decoder vsi is valid for future use. | ||||
| CVE-2024-36908 | 1 Linux | 1 Linux Kernel | 2025-11-03 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: blk-iocost: do not WARN if iocg was already offlined In iocg_pay_debt(), warn is triggered if 'active_list' is empty, which is intended to confirm iocg is active when it has debt. However, warn can be triggered during a blkcg or disk removal, if iocg_waitq_timer_fn() is run at that time: WARNING: CPU: 0 PID: 2344971 at block/blk-iocost.c:1402 iocg_pay_debt+0x14c/0x190 Call trace: iocg_pay_debt+0x14c/0x190 iocg_kick_waitq+0x438/0x4c0 iocg_waitq_timer_fn+0xd8/0x130 __run_hrtimer+0x144/0x45c __hrtimer_run_queues+0x16c/0x244 hrtimer_interrupt+0x2cc/0x7b0 The warn in this situation is meaningless. Since this iocg is being removed, the state of the 'active_list' is irrelevant, and 'waitq_timer' is canceled after removing 'active_list' in ioc_pd_free(), which ensures iocg is freed after iocg_waitq_timer_fn() returns. Therefore, add the check if iocg was already offlined to avoid warn when removing a blkcg or disk. | ||||
| CVE-2024-27056 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: ensure offloading TID queue exists The resume code path assumes that the TX queue for the offloading TID has been configured. At resume time it then tries to sync the write pointer as it may have been updated by the firmware. In the unusual event that no packets have been send on TID 0, the queue will not have been allocated and this causes a crash. Fix this by ensuring the queue exist at suspend time. | ||||
| CVE-2024-26783 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm/vmscan: fix a bug calling wakeup_kswapd() with a wrong zone index With numa balancing on, when a numa system is running where a numa node doesn't have its local memory so it has no managed zones, the following oops has been observed. It's because wakeup_kswapd() is called with a wrong zone index, -1. Fixed it by checking the index before calling wakeup_kswapd(). > BUG: unable to handle page fault for address: 00000000000033f3 > #PF: supervisor read access in kernel mode > #PF: error_code(0x0000) - not-present page > PGD 0 P4D 0 > Oops: 0000 [#1] PREEMPT SMP NOPTI > CPU: 2 PID: 895 Comm: masim Not tainted 6.6.0-dirty #255 > Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS > rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 > RIP: 0010:wakeup_kswapd (./linux/mm/vmscan.c:7812) > Code: (omitted) > RSP: 0000:ffffc90004257d58 EFLAGS: 00010286 > RAX: ffffffffffffffff RBX: ffff88883fff0480 RCX: 0000000000000003 > RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88883fff0480 > RBP: ffffffffffffffff R08: ff0003ffffffffff R09: ffffffffffffffff > R10: ffff888106c95540 R11: 0000000055555554 R12: 0000000000000003 > R13: 0000000000000000 R14: 0000000000000000 R15: ffff88883fff0940 > FS: 00007fc4b8124740(0000) GS:ffff888827c00000(0000) knlGS:0000000000000000 > CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 > CR2: 00000000000033f3 CR3: 000000026cc08004 CR4: 0000000000770ee0 > DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 > DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 > PKRU: 55555554 > Call Trace: > <TASK> > ? __die > ? page_fault_oops > ? __pte_offset_map_lock > ? exc_page_fault > ? asm_exc_page_fault > ? wakeup_kswapd > migrate_misplaced_page > __handle_mm_fault > handle_mm_fault > do_user_addr_fault > exc_page_fault > asm_exc_page_fault > RIP: 0033:0x55b897ba0808 > Code: (omitted) > RSP: 002b:00007ffeefa821a0 EFLAGS: 00010287 > RAX: 000055b89983acd0 RBX: 00007ffeefa823f8 RCX: 000055b89983acd0 > RDX: 00007fc2f8122010 RSI: 0000000000020000 RDI: 000055b89983acd0 > RBP: 00007ffeefa821a0 R08: 0000000000000037 R09: 0000000000000075 > R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000 > R13: 00007ffeefa82410 R14: 000055b897ba5dd8 R15: 00007fc4b8340000 > </TASK> | ||||
| CVE-2024-26596 | 1 Linux | 1 Linux Kernel | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: dsa: fix netdev_priv() dereference before check on non-DSA netdevice events After the blamed commit, we started doing this dereference for every NETDEV_CHANGEUPPER and NETDEV_PRECHANGEUPPER event in the system. static inline struct dsa_port *dsa_user_to_port(const struct net_device *dev) { struct dsa_user_priv *p = netdev_priv(dev); return p->dp; } Which is obviously bogus, because not all net_devices have a netdev_priv() of type struct dsa_user_priv. But struct dsa_user_priv is fairly small, and p->dp means dereferencing 8 bytes starting with offset 16. Most drivers allocate that much private memory anyway, making our access not fault, and we discard the bogus data quickly afterwards, so this wasn't caught. But the dummy interface is somewhat special in that it calls alloc_netdev() with a priv size of 0. So every netdev_priv() dereference is invalid, and we get this when we emit a NETDEV_PRECHANGEUPPER event with a VLAN as its new upper: $ ip link add dummy1 type dummy $ ip link add link dummy1 name dummy1.100 type vlan id 100 [ 43.309174] ================================================================== [ 43.316456] BUG: KASAN: slab-out-of-bounds in dsa_user_prechangeupper+0x30/0xe8 [ 43.323835] Read of size 8 at addr ffff3f86481d2990 by task ip/374 [ 43.330058] [ 43.342436] Call trace: [ 43.366542] dsa_user_prechangeupper+0x30/0xe8 [ 43.371024] dsa_user_netdevice_event+0xb38/0xee8 [ 43.375768] notifier_call_chain+0xa4/0x210 [ 43.379985] raw_notifier_call_chain+0x24/0x38 [ 43.384464] __netdev_upper_dev_link+0x3ec/0x5d8 [ 43.389120] netdev_upper_dev_link+0x70/0xa8 [ 43.393424] register_vlan_dev+0x1bc/0x310 [ 43.397554] vlan_newlink+0x210/0x248 [ 43.401247] rtnl_newlink+0x9fc/0xe30 [ 43.404942] rtnetlink_rcv_msg+0x378/0x580 Avoid the kernel oops by dereferencing after the type check, as customary. | ||||
| CVE-2023-52927 | 1 Linux | 1 Linux Kernel | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: netfilter: allow exp not to be removed in nf_ct_find_expectation Currently nf_conntrack_in() calling nf_ct_find_expectation() will remove the exp from the hash table. However, in some scenario, we expect the exp not to be removed when the created ct will not be confirmed, like in OVS and TC conntrack in the following patches. This patch allows exp not to be removed by setting IPS_CONFIRMED in the status of the tmpl. | ||||
| CVE-2023-36177 | 1 Badaix | 1 Snapcast | 2025-11-03 | 9.8 Critical |
| An issue was discovered in badaix Snapcast version 0.27.0, allows remote attackers to execute arbitrary code and gain sensitive information via crafted request in JSON-RPC-API. | ||||
| CVE-2022-4415 | 2 Redhat, Systemd Project | 3 Enterprise Linux, Rhel Eus, Systemd | 2025-11-03 | 5.5 Medium |
| A vulnerability was found in systemd. This security flaw can cause a local information leak due to systemd-coredump not respecting the fs.suid_dumpable kernel setting. | ||||
| CVE-2021-45098 | 2 Debian, Oisf | 2 Debian Linux, Suricata | 2025-11-03 | 7.5 High |
| An issue was discovered in Suricata before 6.0.4. It is possible to bypass/evade any HTTP-based signature by faking an RST TCP packet with random TCP options of the md5header from the client side. After the three-way handshake, it's possible to inject an RST ACK with a random TCP md5header option. Then, the client can send an HTTP GET request with a forbidden URL. The server will ignore the RST ACK and send the response HTTP packet for the client's request. These packets will not trigger a Suricata reject action. | ||||
| CVE-2021-43666 | 2 Arm, Debian | 2 Mbed Tls, Debian Linux | 2025-11-03 | 7.5 High |
| A Denial of Service vulnerability exists in mbed TLS 3.0.0 and earlier in the mbedtls_pkcs12_derivation function when an input password's length is 0. | ||||
| CVE-2020-36309 | 1 Openresty | 1 Lua-nginx-module | 2025-11-03 | 5.3 Medium |
| ngx_http_lua_module (aka lua-nginx-module) before 0.10.16 in OpenResty allows unsafe characters in an argument when using the API to mutate a URI, or a request or response header. | ||||
| CVE-2019-11483 | 2 Apport Project, Canonical | 2 Apport, Ubuntu Linux | 2025-11-03 | 7 High |
| Sander Bos discovered Apport mishandled crash dumps originating from containers. This could be used by a local attacker to generate a crash report for a privileged process that is readable by an unprivileged user. | ||||
| CVE-2025-43276 | 1 Apple | 2 Macos, Macos Sequoia | 2025-11-03 | 5.3 Medium |
| A logic error was addressed with improved error handling. This issue is fixed in macOS Sequoia 15.6. iCloud Private Relay may not activate when more than one user is logged in at the same time. | ||||
| CVE-2025-22049 | 1 Linux | 1 Linux Kernel | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: LoongArch: Increase ARCH_DMA_MINALIGN up to 16 ARCH_DMA_MINALIGN is 1 by default, but some LoongArch-specific devices (such as APBDMA) require 16 bytes alignment. When the data buffer length is too small, the hardware may make an error writing cacheline. Thus, it is dangerous to allocate a small memory buffer for DMA. It's always safe to define ARCH_DMA_MINALIGN as L1_CACHE_BYTES but unnecessary (kmalloc() need small memory objects). Therefore, just increase it to 16. | ||||
| CVE-2025-21994 | 1 Linux | 1 Linux Kernel | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix incorrect validation for num_aces field of smb_acl parse_dcal() validate num_aces to allocate posix_ace_state_array. if (num_aces > ULONG_MAX / sizeof(struct smb_ace *)) It is an incorrect validation that we can create an array of size ULONG_MAX. smb_acl has ->size field to calculate actual number of aces in request buffer size. Use this to check invalid num_aces. | ||||
| CVE-2025-21960 | 1 Linux | 1 Linux Kernel | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: eth: bnxt: do not update checksum in bnxt_xdp_build_skb() The bnxt_rx_pkt() updates ip_summed value at the end if checksum offload is enabled. When the XDP-MB program is attached and it returns XDP_PASS, the bnxt_xdp_build_skb() is called to update skb_shared_info. The main purpose of bnxt_xdp_build_skb() is to update skb_shared_info, but it updates ip_summed value too if checksum offload is enabled. This is actually duplicate work. When the bnxt_rx_pkt() updates ip_summed value, it checks if ip_summed is CHECKSUM_NONE or not. It means that ip_summed should be CHECKSUM_NONE at this moment. But ip_summed may already be updated to CHECKSUM_UNNECESSARY in the XDP-MB-PASS path. So the by skb_checksum_none_assert() WARNS about it. This is duplicate work and updating ip_summed in the bnxt_xdp_build_skb() is not needed. Splat looks like: WARNING: CPU: 3 PID: 5782 at ./include/linux/skbuff.h:5155 bnxt_rx_pkt+0x479b/0x7610 [bnxt_en] Modules linked in: bnxt_re bnxt_en rdma_ucm rdma_cm iw_cm ib_cm ib_uverbs veth xt_nat xt_tcpudp xt_conntrack nft_chain_nat xt_MASQUERADE nf_] CPU: 3 UID: 0 PID: 5782 Comm: socat Tainted: G W 6.14.0-rc4+ #27 Tainted: [W]=WARN Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021 RIP: 0010:bnxt_rx_pkt+0x479b/0x7610 [bnxt_en] Code: 54 24 0c 4c 89 f1 4c 89 ff c1 ea 1f ff d3 0f 1f 00 49 89 c6 48 85 c0 0f 84 4c e5 ff ff 48 89 c7 e8 ca 3d a0 c8 e9 8f f4 ff ff <0f> 0b f RSP: 0018:ffff88881ba09928 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 00000000c7590303 RCX: 0000000000000000 RDX: 1ffff1104e7d1610 RSI: 0000000000000001 RDI: ffff8881c91300b8 RBP: ffff88881ba09b28 R08: ffff888273e8b0d0 R09: ffff888273e8b070 R10: ffff888273e8b010 R11: ffff888278b0f000 R12: ffff888273e8b080 R13: ffff8881c9130e00 R14: ffff8881505d3800 R15: ffff888273e8b000 FS: 00007f5a2e7be080(0000) GS:ffff88881ba00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fff2e708ff8 CR3: 000000013e3b0000 CR4: 00000000007506f0 PKRU: 55555554 Call Trace: <IRQ> ? __warn+0xcd/0x2f0 ? bnxt_rx_pkt+0x479b/0x7610 ? report_bug+0x326/0x3c0 ? handle_bug+0x53/0xa0 ? exc_invalid_op+0x14/0x50 ? asm_exc_invalid_op+0x16/0x20 ? bnxt_rx_pkt+0x479b/0x7610 ? bnxt_rx_pkt+0x3e41/0x7610 ? __pfx_bnxt_rx_pkt+0x10/0x10 ? napi_complete_done+0x2cf/0x7d0 __bnxt_poll_work+0x4e8/0x1220 ? __pfx___bnxt_poll_work+0x10/0x10 ? __pfx_mark_lock.part.0+0x10/0x10 bnxt_poll_p5+0x36a/0xfa0 ? __pfx_bnxt_poll_p5+0x10/0x10 __napi_poll.constprop.0+0xa0/0x440 net_rx_action+0x899/0xd00 ... Following ping.py patch adds xdp-mb-pass case. so ping.py is going to be able to reproduce this issue. | ||||
| CVE-2025-21913 | 1 Linux | 1 Linux Kernel | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: x86/amd_nb: Use rdmsr_safe() in amd_get_mmconfig_range() Xen doesn't offer MSR_FAM10H_MMIO_CONF_BASE to all guests. This results in the following warning: unchecked MSR access error: RDMSR from 0xc0010058 at rIP: 0xffffffff8101d19f (xen_do_read_msr+0x7f/0xa0) Call Trace: xen_read_msr+0x1e/0x30 amd_get_mmconfig_range+0x2b/0x80 quirk_amd_mmconfig_area+0x28/0x100 pnp_fixup_device+0x39/0x50 __pnp_add_device+0xf/0x150 pnp_add_device+0x3d/0x100 pnpacpi_add_device_handler+0x1f9/0x280 acpi_ns_get_device_callback+0x104/0x1c0 acpi_ns_walk_namespace+0x1d0/0x260 acpi_get_devices+0x8a/0xb0 pnpacpi_init+0x50/0x80 do_one_initcall+0x46/0x2e0 kernel_init_freeable+0x1da/0x2f0 kernel_init+0x16/0x1b0 ret_from_fork+0x30/0x50 ret_from_fork_asm+0x1b/0x30 based on quirks for a "PNP0c01" device. Treating MMCFG as disabled is the right course of action, so no change is needed there. This was most likely exposed by fixing the Xen MSR accessors to not be silently-safe. | ||||