Filtered by CWE-843
Total 713 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-55236 1 Microsoft 10 Windows 10 1809, Windows 10 21h2, Windows 10 22h2 and 7 more 2025-09-25 7.3 High
Time-of-check time-of-use (toctou) race condition in Graphics Kernel allows an authorized attacker to execute code locally.
CVE-2023-4194 4 Debian, Fedoraproject, Linux and 1 more 5 Debian Linux, Fedora, Linux Kernel and 2 more 2025-09-25 5.5 Medium
A flaw was found in the Linux kernel's TUN/TAP functionality. This issue could allow a local user to bypass network filters and gain unauthorized access to some resources. The original patches fixing CVE-2023-1076 are incorrect or incomplete. The problem is that the following upstream commits - a096ccca6e50 ("tun: tun_chr_open(): correctly initialize socket uid"), - 66b2c338adce ("tap: tap_open(): correctly initialize socket uid"), pass "inode->i_uid" to sock_init_data_uid() as the last parameter and that turns out to not be accurate.
CVE-2025-21632 1 Linux 1 Linux Kernel 2025-09-24 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Ensure shadow stack is active before "getting" registers The x86 shadow stack support has its own set of registers. Those registers are XSAVE-managed, but they are "supervisor state components" which means that userspace can not touch them with XSAVE/XRSTOR. It also means that they are not accessible from the existing ptrace ABI for XSAVE state. Thus, there is a new ptrace get/set interface for it. The regset code that ptrace uses provides an ->active() handler in addition to the get/set ones. For shadow stack this ->active() handler verifies that shadow stack is enabled via the ARCH_SHSTK_SHSTK bit in the thread struct. The ->active() handler is checked from some call sites of the regset get/set handlers, but not the ptrace ones. This was not understood when shadow stack support was put in place. As a result, both the set/get handlers can be called with XFEATURE_CET_USER in its init state, which would cause get_xsave_addr() to return NULL and trigger a WARN_ON(). The ssp_set() handler luckily has an ssp_active() check to avoid surprising the kernel with shadow stack behavior when the kernel is not ready for it (ARCH_SHSTK_SHSTK==0). That check just happened to avoid the warning. But the ->get() side wasn't so lucky. It can be called with shadow stacks disabled, triggering the warning in practice, as reported by Christina Schimpe: WARNING: CPU: 5 PID: 1773 at arch/x86/kernel/fpu/regset.c:198 ssp_get+0x89/0xa0 [...] Call Trace: <TASK> ? show_regs+0x6e/0x80 ? ssp_get+0x89/0xa0 ? __warn+0x91/0x150 ? ssp_get+0x89/0xa0 ? report_bug+0x19d/0x1b0 ? handle_bug+0x46/0x80 ? exc_invalid_op+0x1d/0x80 ? asm_exc_invalid_op+0x1f/0x30 ? __pfx_ssp_get+0x10/0x10 ? ssp_get+0x89/0xa0 ? ssp_get+0x52/0xa0 __regset_get+0xad/0xf0 copy_regset_to_user+0x52/0xc0 ptrace_regset+0x119/0x140 ptrace_request+0x13c/0x850 ? wait_task_inactive+0x142/0x1d0 ? do_syscall_64+0x6d/0x90 arch_ptrace+0x102/0x300 [...] Ensure that shadow stacks are active in a thread before looking them up in the XSAVE buffer. Since ARCH_SHSTK_SHSTK and user_ssp[SHSTK_EN] are set at the same time, the active check ensures that there will be something to find in the XSAVE buffer. [ dhansen: changelog/subject tweaks ]
CVE-2025-7995 1 Ashlar 1 Cobalt 2025-09-22 N/A
Ashlar-Vellum Cobalt CO File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25981.
CVE-2025-7999 1 Ashlar 1 Cobalt 2025-09-22 N/A
Ashlar-Vellum Cobalt AR File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of AR files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26049.
CVE-2025-8000 1 Ashlar 1 Cobalt 2025-09-22 N/A
Ashlar-Vellum Cobalt LI File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of LI files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26051.
CVE-2025-8002 1 Ashlar 1 Cobalt 2025-09-22 N/A
Ashlar-Vellum Cobalt CO File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26233.
CVE-2025-8005 1 Ashlar 1 Cobalt 2025-09-22 N/A
Ashlar-Vellum Cobalt XE File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of XE files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26237.
CVE-2025-30383 1 Microsoft 5 365 Apps, Excel, Office and 2 more 2025-09-10 7.8 High
Access of resource using incompatible type ('type confusion') in Microsoft Office Excel allows an unauthorized attacker to execute code locally.
CVE-2025-30375 1 Microsoft 5 365 Apps, Excel, Office and 2 more 2025-09-10 7.8 High
Access of resource using incompatible type ('type confusion') in Microsoft Office Excel allows an unauthorized attacker to execute code locally.
CVE-2025-21326 1 Microsoft 2 Windows Server 2022 23h2, Windows Server 2025 2025-09-09 7.8 High
Internet Explorer Remote Code Execution Vulnerability
CVE-2025-21225 1 Microsoft 5 Windows Server 2016, Windows Server 2019, Windows Server 2022 and 2 more 2025-09-09 5.9 Medium
Windows Remote Desktop Gateway (RD Gateway) Denial of Service Vulnerability
CVE-2025-21356 1 Microsoft 3 365 Apps, Office, Office Long Term Servicing Channel 2025-09-09 7.8 High
Microsoft Office Visio Remote Code Execution Vulnerability
CVE-2023-31322 1 Amd 3 Radeon, Radeon Pro W7000, Radeon Rx 7000 2025-09-09 8.7 High
Type confusion in the ASP could allow an attacker to pass a malformed argument to the Reliability, Availability, and Serviceability trusted application (RAS TA) potentially leading to a read or write to shared memory resulting in loss of confidentiality, integrity, or availability.
CVE-2025-22435 1 Google 1 Android 2025-09-04 9.8 Critical
In avdt_msg_ind of avdt_msg.cc, there is a possible memory corruption due to type confusion. This could lead to paired device escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.
CVE-2024-13275 1 Security Kit Project 1 Security Kit 2025-09-02 5.3 Medium
Access of Resource Using Incompatible Type ('Type Confusion') vulnerability in Drupal Security Kit allows HTTP DoS.This issue affects Security Kit: from 0.0.0 before 2.0.3.
CVE-2024-30266 1 Bytecodealliance 1 Wasmtime 2025-09-02 3.3 Low
wasmtime is a runtime for WebAssembly. The 19.0.0 release of Wasmtime contains a regression introduced during its development which can lead to a guest WebAssembly module causing a panic in the host runtime. A valid WebAssembly module, when executed at runtime, may cause this panic. This vulnerability has been patched in version 19.0.1.
CVE-2023-34967 4 Debian, Fedoraproject, Redhat and 1 more 7 Debian Linux, Fedora, Enterprise Linux and 4 more 2025-08-30 5.3 Medium
A Type Confusion vulnerability was found in Samba's mdssvc RPC service for Spotlight. When parsing Spotlight mdssvc RPC packets, one encoded data structure is a key-value style dictionary where the keys are character strings, and the values can be any of the supported types in the mdssvc protocol. Due to a lack of type checking in callers of the dalloc_value_for_key() function, which returns the object associated with a key, a caller may trigger a crash in talloc_get_size() when talloc detects that the passed-in pointer is not a valid talloc pointer. With an RPC worker process shared among multiple client connections, a malicious client or attacker can trigger a process crash in a shared RPC mdssvc worker process, affecting all other clients this worker serves.
CVE-2024-32057 1 Siemens 3 Ps\/iges Parasolid Translator, Ps Iges Parasolid Translator Component, Simcenter Femap 2025-08-27 7.8 High
A vulnerability has been identified in Simcenter Femap (All versions < V2406). The affected application contains a type confusion vulnerability while parsing IGS files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-21562)
CVE-2023-0286 3 Openssl, Redhat, Stormshield 13 Openssl, Enterprise Linux, Jboss Core Services and 10 more 2025-08-27 7.4 High
There is a type confusion vulnerability relating to X.400 address processing inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING but the public structure definition for GENERAL_NAME incorrectly specified the type of the x400Address field as ASN1_TYPE. This field is subsequently interpreted by the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an ASN1_STRING. When CRL checking is enabled (i.e. the application sets the X509_V_FLAG_CRL_CHECK flag), this vulnerability may allow an attacker to pass arbitrary pointers to a memcmp call, enabling them to read memory contents or enact a denial of service. In most cases, the attack requires the attacker to provide both the certificate chain and CRL, neither of which need to have a valid signature. If the attacker only controls one of these inputs, the other input must already contain an X.400 address as a CRL distribution point, which is uncommon. As such, this vulnerability is most likely to only affect applications which have implemented their own functionality for retrieving CRLs over a network.