Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 16690 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-71095 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: fix the crash issue for zero copy XDP_TX action There is a crash issue when running zero copy XDP_TX action, the crash log is shown below. [ 216.122464] Unable to handle kernel paging request at virtual address fffeffff80000000 [ 216.187524] Internal error: Oops: 0000000096000144 [#1] SMP [ 216.301694] Call trace: [ 216.304130] dcache_clean_poc+0x20/0x38 (P) [ 216.308308] __dma_sync_single_for_device+0x1bc/0x1e0 [ 216.313351] stmmac_xdp_xmit_xdpf+0x354/0x400 [ 216.317701] __stmmac_xdp_run_prog+0x164/0x368 [ 216.322139] stmmac_napi_poll_rxtx+0xba8/0xf00 [ 216.326576] __napi_poll+0x40/0x218 [ 216.408054] Kernel panic - not syncing: Oops: Fatal exception in interrupt For XDP_TX action, the xdp_buff is converted to xdp_frame by xdp_convert_buff_to_frame(). The memory type of the resulting xdp_frame depends on the memory type of the xdp_buff. For page pool based xdp_buff it produces xdp_frame with memory type MEM_TYPE_PAGE_POOL. For zero copy XSK pool based xdp_buff it produces xdp_frame with memory type MEM_TYPE_PAGE_ORDER0. However, stmmac_xdp_xmit_back() does not check the memory type and always uses the page pool type, this leads to invalid mappings and causes the crash. Therefore, check the xdp_buff memory type in stmmac_xdp_xmit_back() to fix this issue.
CVE-2025-68810 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: KVM: Disallow toggling KVM_MEM_GUEST_MEMFD on an existing memslot Reject attempts to disable KVM_MEM_GUEST_MEMFD on a memslot that was initially created with a guest_memfd binding, as KVM doesn't support toggling KVM_MEM_GUEST_MEMFD on existing memslots. KVM prevents enabling KVM_MEM_GUEST_MEMFD, but doesn't prevent clearing the flag. Failure to reject the new memslot results in a use-after-free due to KVM not unbinding from the guest_memfd instance. Unbinding on a FLAGS_ONLY change is easy enough, and can/will be done as a hardening measure (in anticipation of KVM supporting dirty logging on guest_memfd at some point), but fixing the use-after-free would only address the immediate symptom. ================================================================== BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x362/0x400 [kvm] Write of size 8 at addr ffff8881111ae908 by task repro/745 CPU: 7 UID: 1000 PID: 745 Comm: repro Not tainted 6.18.0-rc6-115d5de2eef3-next-kasan #3 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: <TASK> dump_stack_lvl+0x51/0x60 print_report+0xcb/0x5c0 kasan_report+0xb4/0xe0 kvm_gmem_release+0x362/0x400 [kvm] __fput+0x2fa/0x9d0 task_work_run+0x12c/0x200 do_exit+0x6ae/0x2100 do_group_exit+0xa8/0x230 __x64_sys_exit_group+0x3a/0x50 x64_sys_call+0x737/0x740 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f581f2eac31 </TASK> Allocated by task 745 on cpu 6 at 9.746971s: kasan_save_stack+0x20/0x40 kasan_save_track+0x13/0x50 __kasan_kmalloc+0x77/0x90 kvm_set_memory_region.part.0+0x652/0x1110 [kvm] kvm_vm_ioctl+0x14b0/0x3290 [kvm] __x64_sys_ioctl+0x129/0x1a0 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Freed by task 745 on cpu 6 at 9.747467s: kasan_save_stack+0x20/0x40 kasan_save_track+0x13/0x50 __kasan_save_free_info+0x37/0x50 __kasan_slab_free+0x3b/0x60 kfree+0xf5/0x440 kvm_set_memslot+0x3c2/0x1160 [kvm] kvm_set_memory_region.part.0+0x86a/0x1110 [kvm] kvm_vm_ioctl+0x14b0/0x3290 [kvm] __x64_sys_ioctl+0x129/0x1a0 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53
CVE-2025-71076 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Limit num_syncs to prevent oversized allocations The OA open parameters did not validate num_syncs, allowing userspace to pass arbitrarily large values, potentially leading to excessive allocations. Add check to ensure that num_syncs does not exceed DRM_XE_MAX_SYNCS, returning -EINVAL when the limit is violated. v2: use XE_IOCTL_DBG() and drop duplicated check. (Ashutosh) (cherry picked from commit e057b2d2b8d815df3858a87dffafa2af37e5945b)
CVE-2025-71092 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/bnxt_re: Fix OOB write in bnxt_re_copy_err_stats() Commit ef56081d1864 ("RDMA/bnxt_re: RoCE related hardware counters update") added three new counters and placed them after BNXT_RE_OUT_OF_SEQ_ERR. BNXT_RE_OUT_OF_SEQ_ERR acts as a boundary marker for allocating hardware statistics with different num_counters values on chip_gen_p5_p7 devices. As a result, BNXT_RE_NUM_STD_COUNTERS are used when allocating hw_stats, which leads to an out-of-bounds write in bnxt_re_copy_err_stats(). The counters BNXT_RE_REQ_CQE_ERROR, BNXT_RE_RESP_CQE_ERROR, and BNXT_RE_RESP_REMOTE_ACCESS_ERRS are applicable to generic hardware, not only p5/p7 devices. Fix this by moving these counters before BNXT_RE_OUT_OF_SEQ_ERR so they are included in the generic counter set.
CVE-2025-68786 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: skip lock-range check on equal size to avoid size==0 underflow When size equals the current i_size (including 0), the code used to call check_lock_range(filp, i_size, size - 1, WRITE), which computes `size - 1` and can underflow for size==0. Skip the equal case.
CVE-2025-68781 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: usb: phy: fsl-usb: Fix use-after-free in delayed work during device removal The delayed work item otg_event is initialized in fsl_otg_conf() and scheduled under two conditions: 1. When a host controller binds to the OTG controller. 2. When the USB ID pin state changes (cable insertion/removal). A race condition occurs when the device is removed via fsl_otg_remove(): the fsl_otg instance may be freed while the delayed work is still pending or executing. This leads to use-after-free when the work function fsl_otg_event() accesses the already freed memory. The problematic scenario: (detach thread) | (delayed work) fsl_otg_remove() | kfree(fsl_otg_dev) //FREE| fsl_otg_event() | og = container_of(...) //USE | og-> //USE Fix this by calling disable_delayed_work_sync() in fsl_otg_remove() before deallocating the fsl_otg structure. This ensures the delayed work is properly canceled and completes execution prior to memory deallocation. This bug was identified through static analysis.
CVE-2025-71099 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Fix potential UAF in xe_oa_add_config_ioctl() In xe_oa_add_config_ioctl(), we accessed oa_config->id after dropping metrics_lock. Since this lock protects the lifetime of oa_config, an attacker could guess the id and call xe_oa_remove_config_ioctl() with perfect timing, freeing oa_config before we dereference it, leading to a potential use-after-free. Fix this by caching the id in a local variable while holding the lock. v2: (Matt A) - Dropped mutex_unlock(&oa->metrics_lock) ordering change from xe_oa_remove_config_ioctl() (cherry picked from commit 28aeaed130e8e587fd1b73b6d66ca41ccc5a1a31)
CVE-2025-71067 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs: set dummy blocksize to read boot_block when mounting When mounting, sb->s_blocksize is used to read the boot_block without being defined or validated. Set a dummy blocksize before attempting to read the boot_block. The issue can be triggered with the following syz reproducer: mkdirat(0xffffffffffffff9c, &(0x7f0000000080)='./file1\x00', 0x0) r4 = openat$nullb(0xffffffffffffff9c, &(0x7f0000000040), 0x121403, 0x0) ioctl$FS_IOC_SETFLAGS(r4, 0x40081271, &(0x7f0000000980)=0x4000) mount(&(0x7f0000000140)=@nullb, &(0x7f0000000040)='./cgroup\x00', &(0x7f0000000000)='ntfs3\x00', 0x2208004, 0x0) syz_clone(0x88200200, 0x0, 0x0, 0x0, 0x0, 0x0) Here, the ioctl sets the bdev block size to 16384. During mount, get_tree_bdev_flags() calls sb_set_blocksize(sb, block_size(bdev)), but since block_size(bdev) > PAGE_SIZE, sb_set_blocksize() leaves sb->s_blocksize at zero. Later, ntfs_init_from_boot() attempts to read the boot_block while sb->s_blocksize is still zero, which triggers the bug. [almaz.alexandrovich@paragon-software.com: changed comment style, added return value handling]
CVE-2025-68805 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: fuse: fix io-uring list corruption for terminated non-committed requests When a request is terminated before it has been committed, the request is not removed from the queue's list. This leaves a dangling list entry that leads to list corruption and use-after-free issues. Remove the request from the queue's list for terminated non-committed requests.
CVE-2025-68809 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: vfs: fix race on m_flags in vfs_cache ksmbd maintains delete-on-close and pending-delete state in ksmbd_inode->m_flags. In vfs_cache.c this field is accessed under inconsistent locking: some paths read and modify m_flags under ci->m_lock while others do so without taking the lock at all. Examples: - ksmbd_query_inode_status() and __ksmbd_inode_close() use ci->m_lock when checking or updating m_flags. - ksmbd_inode_pending_delete(), ksmbd_set_inode_pending_delete(), ksmbd_clear_inode_pending_delete() and ksmbd_fd_set_delete_on_close() used to read and modify m_flags without ci->m_lock. This creates a potential data race on m_flags when multiple threads open, close and delete the same file concurrently. In the worst case delete-on-close and pending-delete bits can be lost or observed in an inconsistent state, leading to confusing delete semantics (files that stay on disk after delete-on-close, or files that disappear while still in use). Fix it by: - Making ksmbd_query_inode_status() look at m_flags under ci->m_lock after dropping inode_hash_lock. - Adding ci->m_lock protection to all helpers that read or modify m_flags (ksmbd_inode_pending_delete(), ksmbd_set_inode_pending_delete(), ksmbd_clear_inode_pending_delete(), ksmbd_fd_set_delete_on_close()). - Keeping the existing ci->m_lock protection in __ksmbd_inode_close(), and moving the actual unlink/xattr removal outside the lock. This unifies the locking around m_flags and removes the data race while preserving the existing delete-on-close behaviour.
CVE-2025-71080 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix a BUG in rt6_get_pcpu_route() under PREEMPT_RT On PREEMPT_RT kernels, after rt6_get_pcpu_route() returns NULL, the current task can be preempted. Another task running on the same CPU may then execute rt6_make_pcpu_route() and successfully install a pcpu_rt entry. When the first task resumes execution, its cmpxchg() in rt6_make_pcpu_route() will fail because rt6i_pcpu is no longer NULL, triggering the BUG_ON(prev). It's easy to reproduce it by adding mdelay() after rt6_get_pcpu_route(). Using preempt_disable/enable is not appropriate here because ip6_rt_pcpu_alloc() may sleep. Fix this by handling the cmpxchg() failure gracefully on PREEMPT_RT: free our allocation and return the existing pcpu_rt installed by another task. The BUG_ON is replaced by WARN_ON_ONCE for non-PREEMPT_RT kernels where such races should not occur.
CVE-2025-68772 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid updating compression context during writeback Bai, Shuangpeng <sjb7183@psu.edu> reported a bug as below: Oops: divide error: 0000 [#1] SMP KASAN PTI CPU: 0 UID: 0 PID: 11441 Comm: syz.0.46 Not tainted 6.17.0 #1 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:f2fs_all_cluster_page_ready+0x106/0x550 fs/f2fs/compress.c:857 Call Trace: <TASK> f2fs_write_cache_pages fs/f2fs/data.c:3078 [inline] __f2fs_write_data_pages fs/f2fs/data.c:3290 [inline] f2fs_write_data_pages+0x1c19/0x3600 fs/f2fs/data.c:3317 do_writepages+0x38e/0x640 mm/page-writeback.c:2634 filemap_fdatawrite_wbc mm/filemap.c:386 [inline] __filemap_fdatawrite_range mm/filemap.c:419 [inline] file_write_and_wait_range+0x2ba/0x3e0 mm/filemap.c:794 f2fs_do_sync_file+0x6e6/0x1b00 fs/f2fs/file.c:294 generic_write_sync include/linux/fs.h:3043 [inline] f2fs_file_write_iter+0x76e/0x2700 fs/f2fs/file.c:5259 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x7e9/0xe00 fs/read_write.c:686 ksys_write+0x19d/0x2d0 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xf7/0x470 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f The bug was triggered w/ below race condition: fsync setattr ioctl - f2fs_do_sync_file - file_write_and_wait_range - f2fs_write_cache_pages : inode is non-compressed : cc.cluster_size = F2FS_I(inode)->i_cluster_size = 0 - tag_pages_for_writeback - f2fs_setattr - truncate_setsize - f2fs_truncate - f2fs_fileattr_set - f2fs_setflags_common - set_compress_context : F2FS_I(inode)->i_cluster_size = 4 : set_inode_flag(inode, FI_COMPRESSED_FILE) - f2fs_compressed_file : return true - f2fs_all_cluster_page_ready : "pgidx % cc->cluster_size" trigger dividing 0 issue Let's change as below to fix this issue: - introduce a new atomic type variable .writeback in structure f2fs_inode_info to track the number of threads which calling f2fs_write_cache_pages(). - use .i_sem lock to protect .writeback update. - check .writeback before update compression context in f2fs_setflags_common() to avoid race w/ ->writepages.
CVE-2025-68823 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ublk: fix deadlock when reading partition table When one process(such as udev) opens ublk block device (e.g., to read the partition table via bdev_open()), a deadlock[1] can occur: 1. bdev_open() grabs disk->open_mutex 2. The process issues read I/O to ublk backend to read partition table 3. In __ublk_complete_rq(), blk_update_request() or blk_mq_end_request() runs bio->bi_end_io() callbacks 4. If this triggers fput() on file descriptor of ublk block device, the work may be deferred to current task's task work (see fput() implementation) 5. This eventually calls blkdev_release() from the same context 6. blkdev_release() tries to grab disk->open_mutex again 7. Deadlock: same task waiting for a mutex it already holds The fix is to run blk_update_request() and blk_mq_end_request() with bottom halves disabled. This forces blkdev_release() to run in kernel work-queue context instead of current task work context, and allows ublk server to make forward progress, and avoids the deadlock. [axboe: rewrite comment in ublk]
CVE-2025-71089 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommu: disable SVA when CONFIG_X86 is set Patch series "Fix stale IOTLB entries for kernel address space", v7. This proposes a fix for a security vulnerability related to IOMMU Shared Virtual Addressing (SVA). In an SVA context, an IOMMU can cache kernel page table entries. When a kernel page table page is freed and reallocated for another purpose, the IOMMU might still hold stale, incorrect entries. This can be exploited to cause a use-after-free or write-after-free condition, potentially leading to privilege escalation or data corruption. This solution introduces a deferred freeing mechanism for kernel page table pages, which provides a safe window to notify the IOMMU to invalidate its caches before the page is reused. This patch (of 8): In the IOMMU Shared Virtual Addressing (SVA) context, the IOMMU hardware shares and walks the CPU's page tables. The x86 architecture maps the kernel's virtual address space into the upper portion of every process's page table. Consequently, in an SVA context, the IOMMU hardware can walk and cache kernel page table entries. The Linux kernel currently lacks a notification mechanism for kernel page table changes, specifically when page table pages are freed and reused. The IOMMU driver is only notified of changes to user virtual address mappings. This can cause the IOMMU's internal caches to retain stale entries for kernel VA. Use-After-Free (UAF) and Write-After-Free (WAF) conditions arise when kernel page table pages are freed and later reallocated. The IOMMU could misinterpret the new data as valid page table entries. The IOMMU might then walk into attacker-controlled memory, leading to arbitrary physical memory DMA access or privilege escalation. This is also a Write-After-Free issue, as the IOMMU will potentially continue to write Accessed and Dirty bits to the freed memory while attempting to walk the stale page tables. Currently, SVA contexts are unprivileged and cannot access kernel mappings. However, the IOMMU will still walk kernel-only page tables all the way down to the leaf entries, where it realizes the mapping is for the kernel and errors out. This means the IOMMU still caches these intermediate page table entries, making the described vulnerability a real concern. Disable SVA on x86 architecture until the IOMMU can receive notification to flush the paging cache before freeing the CPU kernel page table pages.
CVE-2025-68812 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: media: iris: Add sanity check for stop streaming Add sanity check in iris_vb2_stop_streaming. If inst->state is already IRIS_INST_ERROR, we should skip the stream_off operation because it would still send packets to the firmware. In iris_kill_session, inst->state is set to IRIS_INST_ERROR and session_close is executed, which will kfree(inst_hfi_gen2->packet). If stop_streaming is called afterward, it will cause a crash. [bod: remove qcom from patch title]
CVE-2025-68791 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fuse: missing copy_finish in fuse-over-io-uring argument copies Fix a possible reference count leak of payload pages during fuse argument copies. [Joanne: simplified error cleanup]
CVE-2025-68817 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix use-after-free in ksmbd_tree_connect_put under concurrency Under high concurrency, A tree-connection object (tcon) is freed on a disconnect path while another path still holds a reference and later executes *_put()/write on it.
CVE-2025-68811 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: svcrdma: use rc_pageoff for memcpy byte offset svc_rdma_copy_inline_range added rc_curpage (page index) to the page base instead of the byte offset rc_pageoff. Use rc_pageoff so copies land within the current page. Found by ZeroPath (https://zeropath.com)
CVE-2025-71073 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: Input: lkkbd - disable pending work before freeing device lkkbd_interrupt() schedules lk->tq via schedule_work(), and the work handler lkkbd_reinit() dereferences the lkkbd structure and its serio/input_dev fields. lkkbd_disconnect() and error paths in lkkbd_connect() free the lkkbd structure without preventing the reinit work from being queued again until serio_close() returns. This can allow the work handler to run after the structure has been freed, leading to a potential use-after-free. Use disable_work_sync() instead of cancel_work_sync() to ensure the reinit work cannot be re-queued, and call it both in lkkbd_disconnect() and in lkkbd_connect() error paths after serio_open().
CVE-2025-71072 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: shmem: fix recovery on rename failures maple_tree insertions can fail if we are seriously short on memory; simple_offset_rename() does not recover well if it runs into that. The same goes for simple_offset_rename_exchange(). Moreover, shmem_whiteout() expects that if it succeeds, the caller will progress to d_move(), i.e. that shmem_rename2() won't fail past the successful call of shmem_whiteout(). Not hard to fix, fortunately - mtree_store() can't fail if the index we are trying to store into is already present in the tree as a singleton. For simple_offset_rename_exchange() that's enough - we just need to be careful about the order of operations. For simple_offset_rename() solution is to preinsert the target into the tree for new_dir; the rest can be done without any potentially failing operations. That preinsertion has to be done in shmem_rename2() rather than in simple_offset_rename() itself - otherwise we'd need to deal with the possibility of failure after successful shmem_whiteout().