Filtered by vendor Linux
Subscriptions
Total
17075 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2012-2034 | 8 Adobe, Apple, Google and 5 more | 14 Air, Flash Player, Macos and 11 more | 2025-10-22 | 7.5 High |
| Adobe Flash Player before 10.3.183.20 and 11.x before 11.3.300.257 on Windows and Mac OS X; before 10.3.183.20 and 11.x before 11.2.202.236 on Linux; before 11.1.111.10 on Android 2.x and 3.x; and before 11.1.115.9 on Android 4.x, and Adobe AIR before 3.3.0.3610, allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2012-2037. | ||||
| CVE-2012-1535 | 7 Adobe, Apple, Linux and 4 more | 10 Flash Player, Mac Os X, Linux Kernel and 7 more | 2025-10-22 | 7.8 High |
| Unspecified vulnerability in Adobe Flash Player before 11.3.300.271 on Windows and Mac OS X and before 11.2.202.238 on Linux allows remote attackers to execute arbitrary code or cause a denial of service (application crash) via crafted SWF content, as exploited in the wild in August 2012 with SWF content in a Word document. | ||||
| CVE-2012-0767 | 7 Adobe, Apple, Google and 4 more | 7 Flash Player, Mac Os X, Android and 4 more | 2025-10-22 | 6.1 Medium |
| Cross-site scripting (XSS) vulnerability in Adobe Flash Player before 10.3.183.15 and 11.x before 11.1.102.62 on Windows, Mac OS X, Linux, and Solaris; before 11.1.111.6 on Android 2.x and 3.x; and before 11.1.115.6 on Android 4.x allows remote attackers to inject arbitrary web script or HTML via unspecified vectors, aka "Universal XSS (UXSS)," as exploited in the wild in February 2012. | ||||
| CVE-2011-0611 | 9 Adobe, Apple, Google and 6 more | 16 Acrobat, Acrobat Reader, Adobe Air and 13 more | 2025-10-22 | 8.8 High |
| Adobe Flash Player before 10.2.154.27 on Windows, Mac OS X, Linux, and Solaris and 10.2.156.12 and earlier on Android; Adobe AIR before 2.6.19140; and Authplay.dll (aka AuthPlayLib.bundle) in Adobe Reader 9.x before 9.4.4 and 10.x through 10.0.1 on Windows, Adobe Reader 9.x before 9.4.4 and 10.x before 10.0.3 on Mac OS X, and Adobe Acrobat 9.x before 9.4.4 and 10.x before 10.0.3 on Windows and Mac OS X allow remote attackers to execute arbitrary code or cause a denial of service (application crash) via crafted Flash content; as demonstrated by a Microsoft Office document with an embedded .swf file that has a size inconsistency in a "group of included constants," object type confusion, ActionScript that adds custom functions to prototypes, and Date objects; and as exploited in the wild in April 2011. | ||||
| CVE-2011-0609 | 9 Adobe, Apple, Google and 6 more | 15 Acrobat, Acrobat Reader, Air and 12 more | 2025-10-22 | 7.8 High |
| Unspecified vulnerability in Adobe Flash Player 10.2.154.13 and earlier on Windows, Mac OS X, Linux, and Solaris; 10.1.106.16 and earlier on Android; Adobe AIR 2.5.1 and earlier; and Authplay.dll (aka AuthPlayLib.bundle) in Adobe Reader and Acrobat 9.x through 9.4.2 and 10.x through 10.0.1 on Windows and Mac OS X, allows remote attackers to execute arbitrary code or cause a denial of service (application crash) via crafted Flash content, as demonstrated by a .swf file embedded in an Excel spreadsheet, and as exploited in the wild in March 2011. | ||||
| CVE-2010-3904 | 6 Canonical, Linux, Opensuse and 3 more | 8 Ubuntu Linux, Linux Kernel, Opensuse and 5 more | 2025-10-22 | 7.8 High |
| The rds_page_copy_user function in net/rds/page.c in the Reliable Datagram Sockets (RDS) protocol implementation in the Linux kernel before 2.6.36 does not properly validate addresses obtained from user space, which allows local users to gain privileges via crafted use of the sendmsg and recvmsg system calls. | ||||
| CVE-2017-5070 | 5 Apple, Google, Linux and 2 more | 9 Macos, Android, Chrome and 6 more | 2025-10-22 | 8.8 High |
| Type confusion in V8 in Google Chrome prior to 59.0.3071.86 for Linux, Windows, and Mac, and 59.0.3071.92 for Android, allowed a remote attacker to execute arbitrary code inside a sandbox via a crafted HTML page. | ||||
| CVE-2017-5030 | 6 Apple, Debian, Google and 3 more | 10 Macos, Debian Linux, Android and 7 more | 2025-10-22 | 8.8 High |
| Incorrect handling of complex species in V8 in Google Chrome prior to 57.0.2987.98 for Linux, Windows, and Mac and 57.0.2987.108 for Android allowed a remote attacker to execute arbitrary code via a crafted HTML page. | ||||
| CVE-2017-11292 | 6 Adobe, Apple, Google and 3 more | 12 Flash Player, Flash Player Desktop Runtime, Mac Os X and 9 more | 2025-10-22 | 8.8 High |
| Adobe Flash Player version 27.0.0.159 and earlier has a flawed bytecode verification procedure, which allows for an untrusted value to be used in the calculation of an array index. This can lead to type confusion, and successful exploitation could lead to arbitrary code execution. | ||||
| CVE-2017-1000253 | 3 Centos, Linux, Redhat | 8 Centos, Linux Kernel, Enterprise Linux and 5 more | 2025-10-22 | 7.8 High |
| Linux distributions that have not patched their long-term kernels with https://git.kernel.org/linus/a87938b2e246b81b4fb713edb371a9fa3c5c3c86 (committed on April 14, 2015). This kernel vulnerability was fixed in April 2015 by commit a87938b2e246b81b4fb713edb371a9fa3c5c3c86 (backported to Linux 3.10.77 in May 2015), but it was not recognized as a security threat. With CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE enabled, and a normal top-down address allocation strategy, load_elf_binary() will attempt to map a PIE binary into an address range immediately below mm->mmap_base. Unfortunately, load_elf_ binary() does not take account of the need to allocate sufficient space for the entire binary which means that, while the first PT_LOAD segment is mapped below mm->mmap_base, the subsequent PT_LOAD segment(s) end up being mapped above mm->mmap_base into the are that is supposed to be the "gap" between the stack and the binary. | ||||
| CVE-2016-7892 | 6 Adobe, Apple, Google and 3 more | 9 Flash Player, Flash Player Desktop Runtime, Mac Os X and 6 more | 2025-10-22 | 8.8 High |
| Adobe Flash Player versions 23.0.0.207 and earlier, 11.2.202.644 and earlier have an exploitable use after free vulnerability in the TextField class. Successful exploitation could lead to arbitrary code execution. | ||||
| CVE-2016-7855 | 6 Adobe, Apple, Google and 3 more | 13 Flash Player, Mac Os X, Chrome Os and 10 more | 2025-10-22 | 8.8 High |
| Use-after-free vulnerability in Adobe Flash Player before 23.0.0.205 on Windows and OS X and before 11.2.202.643 on Linux allows remote attackers to execute arbitrary code via unspecified vectors, as exploited in the wild in October 2016. | ||||
| CVE-2016-5198 | 5 Apple, Google, Linux and 2 more | 9 Macos, Android, Chrome and 6 more | 2025-10-22 | 8.8 High |
| V8 in Google Chrome prior to 54.0.2840.90 for Linux, and 54.0.2840.85 for Android, and 54.0.2840.87 for Windows and Mac included incorrect optimisation assumptions, which allowed a remote attacker to perform arbitrary read/write operations, leading to code execution, via a crafted HTML page. | ||||
| CVE-2016-1010 | 7 Adobe, Apple, Google and 4 more | 16 Air, Air Desktop Runtime, Air Sdk and 13 more | 2025-10-22 | 8.8 High |
| Integer overflow in Adobe Flash Player before 18.0.0.333 and 19.x through 21.x before 21.0.0.182 on Windows and OS X and before 11.2.202.577 on Linux, Adobe AIR before 21.0.0.176, Adobe AIR SDK before 21.0.0.176, and Adobe AIR SDK & Compiler before 21.0.0.176 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2016-0963 and CVE-2016-0993. | ||||
| CVE-2016-0984 | 6 Adobe, Apple, Google and 3 more | 14 Air Desktop Runtime, Air Sdk, Air Sdk \& Compiler and 11 more | 2025-10-22 | 8.8 High |
| Use-after-free vulnerability in Adobe Flash Player before 18.0.0.329 and 19.x and 20.x before 20.0.0.306 on Windows and OS X and before 11.2.202.569 on Linux, Adobe AIR before 20.0.0.260, Adobe AIR SDK before 20.0.0.260, and Adobe AIR SDK & Compiler before 20.0.0.260 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2016-0973, CVE-2016-0974, CVE-2016-0975, CVE-2016-0982, and CVE-2016-0983. | ||||
| CVE-2015-8651 | 9 Adobe, Apple, Google and 6 more | 23 Air, Air Sdk, Air Sdk \& Compiler and 20 more | 2025-10-22 | 8.8 High |
| Integer overflow in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors. | ||||
| CVE-2015-7645 | 7 Adobe, Apple, Linux and 4 more | 14 Flash Player, Mac Os X, Linux Kernel and 11 more | 2025-10-22 | 7.8 High |
| Adobe Flash Player 18.x through 18.0.0.252 and 19.x through 19.0.0.207 on Windows and OS X and 11.x through 11.2.202.535 on Linux allows remote attackers to execute arbitrary code via a crafted SWF file, as exploited in the wild in October 2015. | ||||
| CVE-2025-40012 | 1 Linux | 1 Linux Kernel | 2025-10-21 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net/smc: fix warning in smc_rx_splice() when calling get_page() smc_lo_register_dmb() allocates DMB buffers with kzalloc(), which are later passed to get_page() in smc_rx_splice(). Since kmalloc memory is not page-backed, this triggers WARN_ON_ONCE() in get_page() and prevents holding a refcount on the buffer. This can lead to use-after-free if the memory is released before splice_to_pipe() completes. Use folio_alloc() instead, ensuring DMBs are page-backed and safe for get_page(). WARNING: CPU: 18 PID: 12152 at ./include/linux/mm.h:1330 smc_rx_splice+0xaf8/0xe20 [smc] CPU: 18 UID: 0 PID: 12152 Comm: smcapp Kdump: loaded Not tainted 6.17.0-rc3-11705-g9cf4672ecfee #10 NONE Hardware name: IBM 3931 A01 704 (z/VM 7.4.0) Krnl PSW : 0704e00180000000 000793161032696c (smc_rx_splice+0xafc/0xe20 [smc]) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3 Krnl GPRS: 0000000000000000 001cee80007d3001 00077400000000f8 0000000000000005 0000000000000001 001cee80007d3006 0007740000001000 001c000000000000 000000009b0c99e0 0000000000001000 001c0000000000f8 001c000000000000 000003ffcc6f7c88 0007740003e98000 0007931600000005 000792969b2ff7b8 Krnl Code: 0007931610326960: af000000 mc 0,0 0007931610326964: a7f4ff43 brc 15,00079316103267ea #0007931610326968: af000000 mc 0,0 >000793161032696c: a7f4ff3f brc 15,00079316103267ea 0007931610326970: e320f1000004 lg %r2,256(%r15) 0007931610326976: c0e53fd1b5f5 brasl %r14,000793168fd5d560 000793161032697c: a7f4fbb5 brc 15,00079316103260e6 0007931610326980: b904002b lgr %r2,%r11 Call Trace: smc_rx_splice+0xafc/0xe20 [smc] smc_rx_splice+0x756/0xe20 [smc]) smc_rx_recvmsg+0xa74/0xe00 [smc] smc_splice_read+0x1ce/0x3b0 [smc] sock_splice_read+0xa2/0xf0 do_splice_read+0x198/0x240 splice_file_to_pipe+0x7e/0x110 do_splice+0x59e/0xde0 __do_splice+0x11a/0x2d0 __s390x_sys_splice+0x140/0x1f0 __do_syscall+0x122/0x280 system_call+0x6e/0x90 Last Breaking-Event-Address: smc_rx_splice+0x960/0xe20 [smc] ---[ end trace 0000000000000000 ]--- | ||||
| CVE-2025-40010 | 1 Linux | 1 Linux Kernel | 2025-10-21 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: afs: Fix potential null pointer dereference in afs_put_server afs_put_server() accessed server->debug_id before the NULL check, which could lead to a null pointer dereference. Move the debug_id assignment, ensuring we never dereference a NULL server pointer. | ||||
| CVE-2025-40009 | 1 Linux | 1 Linux Kernel | 2025-10-21 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: fs/proc/task_mmu: check p->vec_buf for NULL When the PAGEMAP_SCAN ioctl is invoked with vec_len = 0 reaches pagemap_scan_backout_range(), kernel panics with null-ptr-deref: [ 44.936808] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN NOPTI [ 44.937797] KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] [ 44.938391] CPU: 1 UID: 0 PID: 2480 Comm: reproducer Not tainted 6.17.0-rc6 #22 PREEMPT(none) [ 44.939062] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [ 44.939935] RIP: 0010:pagemap_scan_thp_entry.isra.0+0x741/0xa80 <snip registers, unreliable trace> [ 44.946828] Call Trace: [ 44.947030] <TASK> [ 44.949219] pagemap_scan_pmd_entry+0xec/0xfa0 [ 44.952593] walk_pmd_range.isra.0+0x302/0x910 [ 44.954069] walk_pud_range.isra.0+0x419/0x790 [ 44.954427] walk_p4d_range+0x41e/0x620 [ 44.954743] walk_pgd_range+0x31e/0x630 [ 44.955057] __walk_page_range+0x160/0x670 [ 44.956883] walk_page_range_mm+0x408/0x980 [ 44.958677] walk_page_range+0x66/0x90 [ 44.958984] do_pagemap_scan+0x28d/0x9c0 [ 44.961833] do_pagemap_cmd+0x59/0x80 [ 44.962484] __x64_sys_ioctl+0x18d/0x210 [ 44.962804] do_syscall_64+0x5b/0x290 [ 44.963111] entry_SYSCALL_64_after_hwframe+0x76/0x7e vec_len = 0 in pagemap_scan_init_bounce_buffer() means no buffers are allocated and p->vec_buf remains set to NULL. This breaks an assumption made later in pagemap_scan_backout_range(), that page_region is always allocated for p->vec_buf_index. Fix it by explicitly checking p->vec_buf for NULL before dereferencing. Other sites that might run into same deref-issue are already (directly or transitively) protected by checking p->vec_buf. Note: From PAGEMAP_SCAN man page, it seems vec_len = 0 is valid when no output is requested and it's only the side effects caller is interested in, hence it passes check in pagemap_scan_get_args(). This issue was found by syzkaller. | ||||