Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
16823 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-53802 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: htc_hst: free skb in ath9k_htc_rx_msg() if there is no callback function It is stated that ath9k_htc_rx_msg() either frees the provided skb or passes its management to another callback function. However, the skb is not freed in case there is no another callback function, and Syzkaller was able to cause a memory leak. Also minor comment fix. Found by Linux Verification Center (linuxtesting.org) with Syzkaller. | ||||
| CVE-2025-40327 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: perf/core: Fix system hang caused by cpu-clock usage cpu-clock usage by the async-profiler tool can trigger a system hang, which got bisected back to the following commit by Octavia Togami: 18dbcbfabfff ("perf: Fix the POLL_HUP delivery breakage") causes this issue The root cause of the hang is that cpu-clock is a special type of SW event which relies on hrtimers. The __perf_event_overflow() callback is invoked from the hrtimer handler for cpu-clock events, and __perf_event_overflow() tries to call cpu_clock_event_stop() to stop the event, which calls htimer_cancel() to cancel the hrtimer. But that's a recursion into the hrtimer code from a hrtimer handler, which (unsurprisingly) deadlocks. To fix this bug, use hrtimer_try_to_cancel() instead, and set the PERF_HES_STOPPED flag, which causes perf_swevent_hrtimer() to stop the event once it sees the PERF_HES_STOPPED flag. [ mingo: Fixed the comments and improved the changelog. ] | ||||
| CVE-2025-40328 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in smb2_close_cached_fid() find_or_create_cached_dir() could grab a new reference after kref_put() had seen the refcount drop to zero but before cfid_list_lock is acquired in smb2_close_cached_fid(), leading to use-after-free. Switch to kref_put_lock() so cfid_release() is called with cfid_list_lock held, closing that gap. | ||||
| CVE-2023-53809 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: l2tp: Avoid possible recursive deadlock in l2tp_tunnel_register() When a file descriptor of pppol2tp socket is passed as file descriptor of UDP socket, a recursive deadlock occurs in l2tp_tunnel_register(). This situation is reproduced by the following program: int main(void) { int sock; struct sockaddr_pppol2tp addr; sock = socket(AF_PPPOX, SOCK_DGRAM, PX_PROTO_OL2TP); if (sock < 0) { perror("socket"); return 1; } addr.sa_family = AF_PPPOX; addr.sa_protocol = PX_PROTO_OL2TP; addr.pppol2tp.pid = 0; addr.pppol2tp.fd = sock; addr.pppol2tp.addr.sin_family = PF_INET; addr.pppol2tp.addr.sin_port = htons(0); addr.pppol2tp.addr.sin_addr.s_addr = inet_addr("192.168.0.1"); addr.pppol2tp.s_tunnel = 1; addr.pppol2tp.s_session = 0; addr.pppol2tp.d_tunnel = 0; addr.pppol2tp.d_session = 0; if (connect(sock, (const struct sockaddr *)&addr, sizeof(addr)) < 0) { perror("connect"); return 1; } return 0; } This program causes the following lockdep warning: ============================================ WARNING: possible recursive locking detected 6.2.0-rc5-00205-gc96618275234 #56 Not tainted -------------------------------------------- repro/8607 is trying to acquire lock: ffff8880213c8130 (sk_lock-AF_PPPOX){+.+.}-{0:0}, at: l2tp_tunnel_register+0x2b7/0x11c0 but task is already holding lock: ffff8880213c8130 (sk_lock-AF_PPPOX){+.+.}-{0:0}, at: pppol2tp_connect+0xa82/0x1a30 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(sk_lock-AF_PPPOX); lock(sk_lock-AF_PPPOX); *** DEADLOCK *** May be due to missing lock nesting notation 1 lock held by repro/8607: #0: ffff8880213c8130 (sk_lock-AF_PPPOX){+.+.}-{0:0}, at: pppol2tp_connect+0xa82/0x1a30 stack backtrace: CPU: 0 PID: 8607 Comm: repro Not tainted 6.2.0-rc5-00205-gc96618275234 #56 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x100/0x178 __lock_acquire.cold+0x119/0x3b9 ? lockdep_hardirqs_on_prepare+0x410/0x410 lock_acquire+0x1e0/0x610 ? l2tp_tunnel_register+0x2b7/0x11c0 ? lock_downgrade+0x710/0x710 ? __fget_files+0x283/0x3e0 lock_sock_nested+0x3a/0xf0 ? l2tp_tunnel_register+0x2b7/0x11c0 l2tp_tunnel_register+0x2b7/0x11c0 ? sprintf+0xc4/0x100 ? l2tp_tunnel_del_work+0x6b0/0x6b0 ? debug_object_deactivate+0x320/0x320 ? lockdep_init_map_type+0x16d/0x7a0 ? lockdep_init_map_type+0x16d/0x7a0 ? l2tp_tunnel_create+0x2bf/0x4b0 ? l2tp_tunnel_create+0x3c6/0x4b0 pppol2tp_connect+0x14e1/0x1a30 ? pppol2tp_put_sk+0xd0/0xd0 ? aa_sk_perm+0x2b7/0xa80 ? aa_af_perm+0x260/0x260 ? bpf_lsm_socket_connect+0x9/0x10 ? pppol2tp_put_sk+0xd0/0xd0 __sys_connect_file+0x14f/0x190 __sys_connect+0x133/0x160 ? __sys_connect_file+0x190/0x190 ? lockdep_hardirqs_on+0x7d/0x100 ? ktime_get_coarse_real_ts64+0x1b7/0x200 ? ktime_get_coarse_real_ts64+0x147/0x200 ? __audit_syscall_entry+0x396/0x500 __x64_sys_connect+0x72/0xb0 do_syscall_64+0x38/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd This patch fixes the issue by getting/creating the tunnel before locking the pppol2tp socket. | ||||
| CVE-2022-50652 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: uio: uio_dmem_genirq: Fix missing unlock in irq configuration Commit b74351287d4b ("uio: fix a sleep-in-atomic-context bug in uio_dmem_genirq_irqcontrol()") started calling disable_irq() without holding the spinlock because it can sleep. However, that fix introduced another bug: if interrupt is already disabled and a new disable request comes in, then the spinlock is not unlocked: root@localhost:~# printf '\x00\x00\x00\x00' > /dev/uio0 root@localhost:~# printf '\x00\x00\x00\x00' > /dev/uio0 root@localhost:~# [ 14.851538] BUG: scheduling while atomic: bash/223/0x00000002 [ 14.851991] Modules linked in: uio_dmem_genirq uio myfpga(OE) bochs drm_vram_helper drm_ttm_helper ttm drm_kms_helper drm snd_pcm ppdev joydev psmouse snd_timer snd e1000fb_sys_fops syscopyarea parport sysfillrect soundcore sysimgblt input_leds pcspkr i2c_piix4 serio_raw floppy evbug qemu_fw_cfg mac_hid pata_acpi ip_tables x_tables autofs4 [last unloaded: parport_pc] [ 14.854206] CPU: 0 PID: 223 Comm: bash Tainted: G OE 6.0.0-rc7 #21 [ 14.854786] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 [ 14.855664] Call Trace: [ 14.855861] <TASK> [ 14.856025] dump_stack_lvl+0x4d/0x67 [ 14.856325] dump_stack+0x14/0x1a [ 14.856583] __schedule_bug.cold+0x4b/0x5c [ 14.856915] __schedule+0xe81/0x13d0 [ 14.857199] ? idr_find+0x13/0x20 [ 14.857456] ? get_work_pool+0x2d/0x50 [ 14.857756] ? __flush_work+0x233/0x280 [ 14.858068] ? __schedule+0xa95/0x13d0 [ 14.858307] ? idr_find+0x13/0x20 [ 14.858519] ? get_work_pool+0x2d/0x50 [ 14.858798] schedule+0x6c/0x100 [ 14.859009] schedule_hrtimeout_range_clock+0xff/0x110 [ 14.859335] ? tty_write_room+0x1f/0x30 [ 14.859598] ? n_tty_poll+0x1ec/0x220 [ 14.859830] ? tty_ldisc_deref+0x1a/0x20 [ 14.860090] schedule_hrtimeout_range+0x17/0x20 [ 14.860373] do_select+0x596/0x840 [ 14.860627] ? __kernel_text_address+0x16/0x50 [ 14.860954] ? poll_freewait+0xb0/0xb0 [ 14.861235] ? poll_freewait+0xb0/0xb0 [ 14.861517] ? rpm_resume+0x49d/0x780 [ 14.861798] ? common_interrupt+0x59/0xa0 [ 14.862127] ? asm_common_interrupt+0x2b/0x40 [ 14.862511] ? __uart_start.isra.0+0x61/0x70 [ 14.862902] ? __check_object_size+0x61/0x280 [ 14.863255] core_sys_select+0x1c6/0x400 [ 14.863575] ? vfs_write+0x1c9/0x3d0 [ 14.863853] ? vfs_write+0x1c9/0x3d0 [ 14.864121] ? _copy_from_user+0x45/0x70 [ 14.864526] do_pselect.constprop.0+0xb3/0xf0 [ 14.864893] ? do_syscall_64+0x6d/0x90 [ 14.865228] ? do_syscall_64+0x6d/0x90 [ 14.865556] __x64_sys_pselect6+0x76/0xa0 [ 14.865906] do_syscall_64+0x60/0x90 [ 14.866214] ? syscall_exit_to_user_mode+0x2a/0x50 [ 14.866640] ? do_syscall_64+0x6d/0x90 [ 14.866972] ? do_syscall_64+0x6d/0x90 [ 14.867286] ? do_syscall_64+0x6d/0x90 [ 14.867626] entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] stripped [ 14.872959] </TASK> ('myfpga' is a simple 'uio_dmem_genirq' driver I wrote to test this) The implementation of "uio_dmem_genirq" was based on "uio_pdrv_genirq" and it is used in a similar manner to the "uio_pdrv_genirq" driver with respect to interrupt configuration and handling. At the time "uio_dmem_genirq" was introduced, both had the same implementation of the 'uio_info' handlers irqcontrol() and handler(). Then commit 34cb27528398 ("UIO: Fix concurrency issue"), which was only applied to "uio_pdrv_genirq", ended up making them a little different. That commit, among other things, changed disable_irq() to disable_irq_nosync() in the implementation of irqcontrol(). The motivation there was to avoid a deadlock between irqcontrol() and handler(), since it added a spinlock in the irq handler, and disable_irq() waits for the completion of the irq handler. By changing disable_irq() to disable_irq_nosync() in irqcontrol(), we also avoid the sleeping-whil ---truncated--- | ||||
| CVE-2023-53831 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net: read sk->sk_family once in sk_mc_loop() syzbot is playing with IPV6_ADDRFORM quite a lot these days, and managed to hit the WARN_ON_ONCE(1) in sk_mc_loop() We have many more similar issues to fix. WARNING: CPU: 1 PID: 1593 at net/core/sock.c:782 sk_mc_loop+0x165/0x260 Modules linked in: CPU: 1 PID: 1593 Comm: kworker/1:3 Not tainted 6.1.40-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023 Workqueue: events_power_efficient gc_worker RIP: 0010:sk_mc_loop+0x165/0x260 net/core/sock.c:782 Code: 34 1b fd 49 81 c7 18 05 00 00 4c 89 f8 48 c1 e8 03 42 80 3c 20 00 74 08 4c 89 ff e8 25 36 6d fd 4d 8b 37 eb 13 e8 db 33 1b fd <0f> 0b b3 01 eb 34 e8 d0 33 1b fd 45 31 f6 49 83 c6 38 4c 89 f0 48 RSP: 0018:ffffc90000388530 EFLAGS: 00010246 RAX: ffffffff846d9b55 RBX: 0000000000000011 RCX: ffff88814f884980 RDX: 0000000000000102 RSI: ffffffff87ae5160 RDI: 0000000000000011 RBP: ffffc90000388550 R08: 0000000000000003 R09: ffffffff846d9a65 R10: 0000000000000002 R11: ffff88814f884980 R12: dffffc0000000000 R13: ffff88810dbee000 R14: 0000000000000010 R15: ffff888150084000 FS: 0000000000000000(0000) GS:ffff8881f6b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000180 CR3: 000000014ee5b000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <IRQ> [<ffffffff8507734f>] ip6_finish_output2+0x33f/0x1ae0 net/ipv6/ip6_output.c:83 [<ffffffff85062766>] __ip6_finish_output net/ipv6/ip6_output.c:200 [inline] [<ffffffff85062766>] ip6_finish_output+0x6c6/0xb10 net/ipv6/ip6_output.c:211 [<ffffffff85061f8c>] NF_HOOK_COND include/linux/netfilter.h:298 [inline] [<ffffffff85061f8c>] ip6_output+0x2bc/0x3d0 net/ipv6/ip6_output.c:232 [<ffffffff852071cf>] dst_output include/net/dst.h:444 [inline] [<ffffffff852071cf>] ip6_local_out+0x10f/0x140 net/ipv6/output_core.c:161 [<ffffffff83618fb4>] ipvlan_process_v6_outbound drivers/net/ipvlan/ipvlan_core.c:483 [inline] [<ffffffff83618fb4>] ipvlan_process_outbound drivers/net/ipvlan/ipvlan_core.c:529 [inline] [<ffffffff83618fb4>] ipvlan_xmit_mode_l3 drivers/net/ipvlan/ipvlan_core.c:602 [inline] [<ffffffff83618fb4>] ipvlan_queue_xmit+0x1174/0x1be0 drivers/net/ipvlan/ipvlan_core.c:677 [<ffffffff8361ddd9>] ipvlan_start_xmit+0x49/0x100 drivers/net/ipvlan/ipvlan_main.c:229 [<ffffffff84763fc0>] netdev_start_xmit include/linux/netdevice.h:4925 [inline] [<ffffffff84763fc0>] xmit_one net/core/dev.c:3644 [inline] [<ffffffff84763fc0>] dev_hard_start_xmit+0x320/0x980 net/core/dev.c:3660 [<ffffffff8494c650>] sch_direct_xmit+0x2a0/0x9c0 net/sched/sch_generic.c:342 [<ffffffff8494d883>] qdisc_restart net/sched/sch_generic.c:407 [inline] [<ffffffff8494d883>] __qdisc_run+0xb13/0x1e70 net/sched/sch_generic.c:415 [<ffffffff8478c426>] qdisc_run+0xd6/0x260 include/net/pkt_sched.h:125 [<ffffffff84796eac>] net_tx_action+0x7ac/0x940 net/core/dev.c:5247 [<ffffffff858002bd>] __do_softirq+0x2bd/0x9bd kernel/softirq.c:599 [<ffffffff814c3fe8>] invoke_softirq kernel/softirq.c:430 [inline] [<ffffffff814c3fe8>] __irq_exit_rcu+0xc8/0x170 kernel/softirq.c:683 [<ffffffff814c3f09>] irq_exit_rcu+0x9/0x20 kernel/softirq.c:695 | ||||
| CVE-2023-53861 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ext4: correct grp validation in ext4_mb_good_group Group corruption check will access memory of grp and will trigger kernel crash if grp is NULL. So do NULL check before corruption check. | ||||
| CVE-2023-53836 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix skb refcnt race after locking changes There is a race where skb's from the sk_psock_backlog can be referenced after userspace side has already skb_consumed() the sk_buff and its refcnt dropped to zer0 causing use after free. The flow is the following: while ((skb = skb_peek(&psock->ingress_skb)) sk_psock_handle_Skb(psock, skb, ..., ingress) if (!ingress) ... sk_psock_skb_ingress sk_psock_skb_ingress_enqueue(skb) msg->skb = skb sk_psock_queue_msg(psock, msg) skb_dequeue(&psock->ingress_skb) The sk_psock_queue_msg() puts the msg on the ingress_msg queue. This is what the application reads when recvmsg() is called. An application can read this anytime after the msg is placed on the queue. The recvmsg hook will also read msg->skb and then after user space reads the msg will call consume_skb(skb) on it effectively free'ing it. But, the race is in above where backlog queue still has a reference to the skb and calls skb_dequeue(). If the skb_dequeue happens after the user reads and free's the skb we have a use after free. The !ingress case does not suffer from this problem because it uses sendmsg_*(sk, msg) which does not pass the sk_buff further down the stack. The following splat was observed with 'test_progs -t sockmap_listen': [ 1022.710250][ T2556] general protection fault, ... [...] [ 1022.712830][ T2556] Workqueue: events sk_psock_backlog [ 1022.713262][ T2556] RIP: 0010:skb_dequeue+0x4c/0x80 [ 1022.713653][ T2556] Code: ... [...] [ 1022.720699][ T2556] Call Trace: [ 1022.720984][ T2556] <TASK> [ 1022.721254][ T2556] ? die_addr+0x32/0x80^M [ 1022.721589][ T2556] ? exc_general_protection+0x25a/0x4b0 [ 1022.722026][ T2556] ? asm_exc_general_protection+0x22/0x30 [ 1022.722489][ T2556] ? skb_dequeue+0x4c/0x80 [ 1022.722854][ T2556] sk_psock_backlog+0x27a/0x300 [ 1022.723243][ T2556] process_one_work+0x2a7/0x5b0 [ 1022.723633][ T2556] worker_thread+0x4f/0x3a0 [ 1022.723998][ T2556] ? __pfx_worker_thread+0x10/0x10 [ 1022.724386][ T2556] kthread+0xfd/0x130 [ 1022.724709][ T2556] ? __pfx_kthread+0x10/0x10 [ 1022.725066][ T2556] ret_from_fork+0x2d/0x50 [ 1022.725409][ T2556] ? __pfx_kthread+0x10/0x10 [ 1022.725799][ T2556] ret_from_fork_asm+0x1b/0x30 [ 1022.726201][ T2556] </TASK> To fix we add an skb_get() before passing the skb to be enqueued in the engress queue. This bumps the skb->users refcnt so that consume_skb() and kfree_skb will not immediately free the sk_buff. With this we can be sure the skb is still around when we do the dequeue. Then we just need to decrement the refcnt or free the skb in the backlog case which we do by calling kfree_skb() on the ingress case as well as the sendmsg case. Before locking change from fixes tag we had the sock locked so we couldn't race with user and there was no issue here. | ||||
| CVE-2023-53839 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: dccp: fix data-race around dp->dccps_mss_cache dccp_sendmsg() reads dp->dccps_mss_cache before locking the socket. Same thing in do_dccp_getsockopt(). Add READ_ONCE()/WRITE_ONCE() annotations, and change dccp_sendmsg() to check again dccps_mss_cache after socket is locked. | ||||
| CVE-2025-40331 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: sctp: Prevent TOCTOU out-of-bounds write For the following path not holding the sock lock, sctp_diag_dump() -> sctp_for_each_endpoint() -> sctp_ep_dump() make sure not to exceed bounds in case the address list has grown between buffer allocation (time-of-check) and write (time-of-use). | ||||
| CVE-2025-40344 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ASoC: Intel: avs: Disable periods-elapsed work when closing PCM avs_dai_fe_shutdown() handles the shutdown procedure for HOST HDAudio stream while period-elapsed work services its IRQs. As the former frees the DAI's private context, these two operations shall be synchronized to avoid slab-use-after-free or worse errors. | ||||
| CVE-2025-40329 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: drm/sched: Fix deadlock in drm_sched_entity_kill_jobs_cb The Mesa issue referenced below pointed out a possible deadlock: [ 1231.611031] Possible interrupt unsafe locking scenario: [ 1231.611033] CPU0 CPU1 [ 1231.611034] ---- ---- [ 1231.611035] lock(&xa->xa_lock#17); [ 1231.611038] local_irq_disable(); [ 1231.611039] lock(&fence->lock); [ 1231.611041] lock(&xa->xa_lock#17); [ 1231.611044] <Interrupt> [ 1231.611045] lock(&fence->lock); [ 1231.611047] *** DEADLOCK *** In this example, CPU0 would be any function accessing job->dependencies through the xa_* functions that don't disable interrupts (eg: drm_sched_job_add_dependency(), drm_sched_entity_kill_jobs_cb()). CPU1 is executing drm_sched_entity_kill_jobs_cb() as a fence signalling callback so in an interrupt context. It will deadlock when trying to grab the xa_lock which is already held by CPU0. Replacing all xa_* usage by their xa_*_irq counterparts would fix this issue, but Christian pointed out another issue: dma_fence_signal takes fence.lock and so does dma_fence_add_callback. dma_fence_signal() // locks f1.lock -> drm_sched_entity_kill_jobs_cb() -> foreach dependencies -> dma_fence_add_callback() // locks f2.lock This will deadlock if f1 and f2 share the same spinlock. To fix both issues, the code iterating on dependencies and re-arming them is moved out to drm_sched_entity_kill_jobs_work(). [phasta: commit message nits] | ||||
| CVE-2025-40330 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Shutdown FW DMA in bnxt_shutdown() The netif_close() call in bnxt_shutdown() only stops packet DMA. There may be FW DMA for trace logging (recently added) that will continue. If we kexec to a new kernel, the DMA will corrupt memory in the new kernel. Add bnxt_hwrm_func_drv_unrgtr() to unregister the driver from the FW. This will stop the FW DMA. In case the call fails, call pcie_flr() to reset the function and stop the DMA. | ||||
| CVE-2025-13639 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2025-12-08 | 8.1 High |
| Inappropriate implementation in WebRTC in Google Chrome prior to 143.0.7499.41 allowed a remote attacker to perform arbitrary read/write via a crafted HTML page. (Chromium security severity: Low) | ||||
| CVE-2025-40277 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Validate command header size against SVGA_CMD_MAX_DATASIZE This data originates from userspace and is used in buffer offset calculations which could potentially overflow causing an out-of-bounds access. | ||||
| CVE-2025-40278 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: sched: act_ife: initialize struct tc_ife to fix KMSAN kernel-infoleak Fix a KMSAN kernel-infoleak detected by the syzbot . [net?] KMSAN: kernel-infoleak in __skb_datagram_iter In tcf_ife_dump(), the variable 'opt' was partially initialized using a designatied initializer. While the padding bytes are reamined uninitialized. nla_put() copies the entire structure into a netlink message, these uninitialized bytes leaked to userspace. Initialize the structure with memset before assigning its fields to ensure all members and padding are cleared prior to beign copied. This change silences the KMSAN report and prevents potential information leaks from the kernel memory. This fix has been tested and validated by syzbot. This patch closes the bug reported at the following syzkaller link and ensures no infoleak. | ||||
| CVE-2025-40274 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: KVM: guest_memfd: Remove bindings on memslot deletion when gmem is dying When unbinding a memslot from a guest_memfd instance, remove the bindings even if the guest_memfd file is dying, i.e. even if its file refcount has gone to zero. If the memslot is freed before the file is fully released, nullifying the memslot side of the binding in kvm_gmem_release() will write to freed memory, as detected by syzbot+KASAN: ================================================================== BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x176/0x440 virt/kvm/guest_memfd.c:353 Write of size 8 at addr ffff88807befa508 by task syz.0.17/6022 CPU: 0 UID: 0 PID: 6022 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025 Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 kvm_gmem_release+0x176/0x440 virt/kvm/guest_memfd.c:353 __fput+0x44c/0xa70 fs/file_table.c:468 task_work_run+0x1d4/0x260 kernel/task_work.c:227 resume_user_mode_work include/linux/resume_user_mode.h:50 [inline] exit_to_user_mode_loop+0xe9/0x130 kernel/entry/common.c:43 exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline] syscall_exit_to_user_mode_work include/linux/entry-common.h:175 [inline] syscall_exit_to_user_mode include/linux/entry-common.h:210 [inline] do_syscall_64+0x2bd/0xfa0 arch/x86/entry/syscall_64.c:100 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fbeeff8efc9 </TASK> Allocated by task 6023: kasan_save_stack mm/kasan/common.c:56 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:77 poison_kmalloc_redzone mm/kasan/common.c:397 [inline] __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:414 kasan_kmalloc include/linux/kasan.h:262 [inline] __kmalloc_cache_noprof+0x3e2/0x700 mm/slub.c:5758 kmalloc_noprof include/linux/slab.h:957 [inline] kzalloc_noprof include/linux/slab.h:1094 [inline] kvm_set_memory_region+0x747/0xb90 virt/kvm/kvm_main.c:2104 kvm_vm_ioctl_set_memory_region+0x6f/0xd0 virt/kvm/kvm_main.c:2154 kvm_vm_ioctl+0x957/0xc60 virt/kvm/kvm_main.c:5201 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 6023: kasan_save_stack mm/kasan/common.c:56 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:77 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:584 poison_slab_object mm/kasan/common.c:252 [inline] __kasan_slab_free+0x5c/0x80 mm/kasan/common.c:284 kasan_slab_free include/linux/kasan.h:234 [inline] slab_free_hook mm/slub.c:2533 [inline] slab_free mm/slub.c:6622 [inline] kfree+0x19a/0x6d0 mm/slub.c:6829 kvm_set_memory_region+0x9c4/0xb90 virt/kvm/kvm_main.c:2130 kvm_vm_ioctl_set_memory_region+0x6f/0xd0 virt/kvm/kvm_main.c:2154 kvm_vm_ioctl+0x957/0xc60 virt/kvm/kvm_main.c:5201 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Deliberately don't acquire filemap invalid lock when the file is dying as the lifecycle of f_mapping is outside the purview of KVM. Dereferencing the mapping is *probably* fine, but there's no need to invalidate anything as memslot deletion is responsible for zapping SPTEs, and the only code that can access the dying file is kvm_gmem_release(), whose core code is mutual ---truncated--- | ||||
| CVE-2025-40284 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: cancel mesh send timer when hdev removed mesh_send_done timer is not canceled when hdev is removed, which causes crash if the timer triggers after hdev is gone. Cancel the timer when MGMT removes the hdev, like other MGMT timers. Should fix the BUG: sporadically seen by BlueZ test bot (in "Mesh - Send cancel - 1" test). Log: ------ BUG: KASAN: slab-use-after-free in run_timer_softirq+0x76b/0x7d0 ... Freed by task 36: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 __kasan_save_free_info+0x3a/0x60 __kasan_slab_free+0x43/0x70 kfree+0x103/0x500 device_release+0x9a/0x210 kobject_put+0x100/0x1e0 vhci_release+0x18b/0x240 ------ | ||||
| CVE-2025-40283 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: reorder cleanup in btusb_disconnect to avoid UAF There is a KASAN: slab-use-after-free read in btusb_disconnect(). Calling "usb_driver_release_interface(&btusb_driver, data->intf)" will free the btusb data associated with the interface. The same data is then used later in the function, hence the UAF. Fix by moving the accesses to btusb data to before the data is free'd. | ||||
| CVE-2025-40281 | 1 Linux | 1 Linux Kernel | 2025-12-08 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: sctp: prevent possible shift-out-of-bounds in sctp_transport_update_rto syzbot reported a possible shift-out-of-bounds [1] Blamed commit added rto_alpha_max and rto_beta_max set to 1000. It is unclear if some sctp users are setting very large rto_alpha and/or rto_beta. In order to prevent user regression, perform the test at run time. Also add READ_ONCE() annotations as sysctl values can change under us. [1] UBSAN: shift-out-of-bounds in net/sctp/transport.c:509:41 shift exponent 64 is too large for 32-bit type 'unsigned int' CPU: 0 UID: 0 PID: 16704 Comm: syz.2.2320 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x16c/0x1f0 lib/dump_stack.c:120 ubsan_epilogue lib/ubsan.c:233 [inline] __ubsan_handle_shift_out_of_bounds+0x27f/0x420 lib/ubsan.c:494 sctp_transport_update_rto.cold+0x1c/0x34b net/sctp/transport.c:509 sctp_check_transmitted+0x11c4/0x1c30 net/sctp/outqueue.c:1502 sctp_outq_sack+0x4ef/0x1b20 net/sctp/outqueue.c:1338 sctp_cmd_process_sack net/sctp/sm_sideeffect.c:840 [inline] sctp_cmd_interpreter net/sctp/sm_sideeffect.c:1372 [inline] | ||||