Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
16823 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-53799 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: crypto: api - Use work queue in crypto_destroy_instance The function crypto_drop_spawn expects to be called in process context. However, when an instance is unregistered while it still has active users, the last user may cause the instance to be freed in atomic context. Fix this by delaying the freeing to a work queue. | ||||
| CVE-2023-53819 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: amdgpu: validate offset_in_bo of drm_amdgpu_gem_va This is motivated by OOB access in amdgpu_vm_update_range when offset_in_bo+map_size overflows. v2: keep the validations in amdgpu_vm_bo_map v3: add the validations to amdgpu_vm_bo_map/amdgpu_vm_bo_replace_map rather than to amdgpu_gem_va_ioctl | ||||
| CVE-2023-53828 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sync: Avoid use-after-free in dbg for hci_add_adv_monitor() KSAN reports use-after-free in hci_add_adv_monitor(). While adding an adv monitor, hci_add_adv_monitor() calls -> msft_add_monitor_pattern() calls -> msft_add_monitor_sync() calls -> msft_le_monitor_advertisement_cb() calls in an error case -> hci_free_adv_monitor() which frees the *moniter. This is referenced by bt_dev_dbg() in hci_add_adv_monitor(). Fix the bt_dev_dbg() by using handle instead of monitor->handle. | ||||
| CVE-2022-50637 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cpufreq: qcom-hw: Fix memory leak in qcom_cpufreq_hw_read_lut() If "cpu_dev" fails to get opp table in qcom_cpufreq_hw_read_lut(), the program will return, resulting in "table" resource is not released. | ||||
| CVE-2023-53825 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: kcm: Fix error handling for SOCK_DGRAM in kcm_sendmsg(). syzkaller found a memory leak in kcm_sendmsg(), and commit c821a88bd720 ("kcm: Fix memory leak in error path of kcm_sendmsg()") suppressed it by updating kcm_tx_msg(head)->last_skb if partial data is copied so that the following sendmsg() will resume from the skb. However, we cannot know how many bytes were copied when we get the error. Thus, we could mess up the MSG_MORE queue. When kcm_sendmsg() fails for SOCK_DGRAM, we should purge the queue as we do so for UDP by udp_flush_pending_frames(). Even without this change, when the error occurred, the following sendmsg() resumed from a wrong skb and the queue was messed up. However, we have yet to get such a report, and only syzkaller stumbled on it. So, this can be changed safely. Note this does not change SOCK_SEQPACKET behaviour. | ||||
| CVE-2023-53856 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: of: overlay: Call of_changeset_init() early When of_overlay_fdt_apply() fails, the changeset may be partially applied, and the caller is still expected to call of_overlay_remove() to clean up this partial state. However, of_overlay_apply() calls of_resolve_phandles() before init_overlay_changeset(). Hence if the overlay fails to apply due to an unresolved symbol, the overlay_changeset.cset.entries list is still uninitialized, and cleanup will crash with a NULL-pointer dereference in overlay_removal_is_ok(). Fix this by moving the call to of_changeset_init() from init_overlay_changeset() to of_overlay_fdt_apply(), where all other early initialization is done. | ||||
| CVE-2023-53850 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: iavf: use internal state to free traffic IRQs If the system tries to close the netdev while iavf_reset_task() is running, __LINK_STATE_START will be cleared and netif_running() will return false in iavf_reinit_interrupt_scheme(). This will result in iavf_free_traffic_irqs() not being called and a leak as follows: [7632.489326] remove_proc_entry: removing non-empty directory 'irq/999', leaking at least 'iavf-enp24s0f0v0-TxRx-0' [7632.490214] WARNING: CPU: 0 PID: 10 at fs/proc/generic.c:718 remove_proc_entry+0x19b/0x1b0 is shown when pci_disable_msix() is later called. Fix by using the internal adapter state. The traffic IRQs will always exist if state == __IAVF_RUNNING. | ||||
| CVE-2023-53796 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: f2fs: fix information leak in f2fs_move_inline_dirents() When converting an inline directory to a regular one, f2fs is leaking uninitialized memory to disk because it doesn't initialize the entire directory block. Fix this by zero-initializing the block. This bug was introduced by commit 4ec17d688d74 ("f2fs: avoid unneeded initializing when converting inline dentry"), which didn't consider the security implications of leaking uninitialized memory to disk. This was found by running xfstest generic/435 on a KMSAN-enabled kernel. | ||||
| CVE-2023-53812 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: fix decoder disable pm crash Can't call pm_runtime_disable when the architecture support sub device for 'dev->pm.dev' is NUll, or will get below crash log. [ 10.771551] pc : _raw_spin_lock_irq+0x4c/0xa0 [ 10.771556] lr : __pm_runtime_disable+0x30/0x130 [ 10.771558] sp : ffffffc01e4cb800 [ 10.771559] x29: ffffffc01e4cb800 x28: ffffffdf082108a8 [ 10.771563] x27: ffffffc01e4cbd70 x26: ffffff8605df55f0 [ 10.771567] x25: 0000000000000002 x24: 0000000000000002 [ 10.771570] x23: ffffff85c0dc9c00 x22: 0000000000000001 [ 10.771573] x21: 0000000000000001 x20: 0000000000000000 [ 10.771577] x19: 00000000000000f4 x18: ffffffdf2e9fbe18 [ 10.771580] x17: 0000000000000000 x16: ffffffdf2df13c74 [ 10.771583] x15: 00000000000002ea x14: 0000000000000058 [ 10.771587] x13: ffffffdf2de1b62c x12: ffffffdf2e9e30e4 [ 10.771590] x11: 0000000000000000 x10: 0000000000000001 [ 10.771593] x9 : 0000000000000000 x8 : 00000000000000f4 [ 10.771596] x7 : 6bff6264632c6264 x6 : 0000000000008000 [ 10.771600] x5 : 0080000000000000 x4 : 0000000000000001 [ 10.771603] x3 : 0000000000000008 x2 : 0000000000000001 [ 10.771608] x1 : 0000000000000000 x0 : 00000000000000f4 [ 10.771613] Call trace: [ 10.771617] _raw_spin_lock_irq+0x4c/0xa0 [ 10.771620] __pm_runtime_disable+0x30/0x130 [ 10.771657] mtk_vcodec_probe+0x69c/0x728 [mtk_vcodec_dec 800cc929d6631f79f9b273254c8db94d0d3500dc] [ 10.771662] platform_drv_probe+0x9c/0xbc [ 10.771665] really_probe+0x13c/0x3a0 [ 10.771668] driver_probe_device+0x84/0xc0 [ 10.771671] device_driver_attach+0x54/0x78 | ||||
| CVE-2023-53863 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: netlink: do not hard code device address lenth in fdb dumps syzbot reports that some netdev devices do not have a six bytes address [1] Replace ETH_ALEN by dev->addr_len. [1] (Case of a device where dev->addr_len = 4) BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline] BUG: KMSAN: kernel-infoleak in copyout+0xb8/0x100 lib/iov_iter.c:169 instrument_copy_to_user include/linux/instrumented.h:114 [inline] copyout+0xb8/0x100 lib/iov_iter.c:169 _copy_to_iter+0x6d8/0x1d00 lib/iov_iter.c:536 copy_to_iter include/linux/uio.h:206 [inline] simple_copy_to_iter+0x68/0xa0 net/core/datagram.c:513 __skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:419 skb_copy_datagram_iter+0x5c/0x200 net/core/datagram.c:527 skb_copy_datagram_msg include/linux/skbuff.h:3960 [inline] netlink_recvmsg+0x4ae/0x15a0 net/netlink/af_netlink.c:1970 sock_recvmsg_nosec net/socket.c:1019 [inline] sock_recvmsg net/socket.c:1040 [inline] ____sys_recvmsg+0x283/0x7f0 net/socket.c:2722 ___sys_recvmsg+0x223/0x840 net/socket.c:2764 do_recvmmsg+0x4f9/0xfd0 net/socket.c:2858 __sys_recvmmsg net/socket.c:2937 [inline] __do_sys_recvmmsg net/socket.c:2960 [inline] __se_sys_recvmmsg net/socket.c:2953 [inline] __x64_sys_recvmmsg+0x397/0x490 net/socket.c:2953 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Uninit was stored to memory at: __nla_put lib/nlattr.c:1009 [inline] nla_put+0x1c6/0x230 lib/nlattr.c:1067 nlmsg_populate_fdb_fill+0x2b8/0x600 net/core/rtnetlink.c:4071 nlmsg_populate_fdb net/core/rtnetlink.c:4418 [inline] ndo_dflt_fdb_dump+0x616/0x840 net/core/rtnetlink.c:4456 rtnl_fdb_dump+0x14ff/0x1fc0 net/core/rtnetlink.c:4629 netlink_dump+0x9d1/0x1310 net/netlink/af_netlink.c:2268 netlink_recvmsg+0xc5c/0x15a0 net/netlink/af_netlink.c:1995 sock_recvmsg_nosec+0x7a/0x120 net/socket.c:1019 ____sys_recvmsg+0x664/0x7f0 net/socket.c:2720 ___sys_recvmsg+0x223/0x840 net/socket.c:2764 do_recvmmsg+0x4f9/0xfd0 net/socket.c:2858 __sys_recvmmsg net/socket.c:2937 [inline] __do_sys_recvmmsg net/socket.c:2960 [inline] __se_sys_recvmmsg net/socket.c:2953 [inline] __x64_sys_recvmmsg+0x397/0x490 net/socket.c:2953 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Uninit was created at: slab_post_alloc_hook+0x12d/0xb60 mm/slab.h:716 slab_alloc_node mm/slub.c:3451 [inline] __kmem_cache_alloc_node+0x4ff/0x8b0 mm/slub.c:3490 kmalloc_trace+0x51/0x200 mm/slab_common.c:1057 kmalloc include/linux/slab.h:559 [inline] __hw_addr_create net/core/dev_addr_lists.c:60 [inline] __hw_addr_add_ex+0x2e5/0x9e0 net/core/dev_addr_lists.c:118 __dev_mc_add net/core/dev_addr_lists.c:867 [inline] dev_mc_add+0x9a/0x130 net/core/dev_addr_lists.c:885 igmp6_group_added+0x267/0xbc0 net/ipv6/mcast.c:680 ipv6_mc_up+0x296/0x3b0 net/ipv6/mcast.c:2754 ipv6_mc_remap+0x1e/0x30 net/ipv6/mcast.c:2708 addrconf_type_change net/ipv6/addrconf.c:3731 [inline] addrconf_notify+0x4d3/0x1d90 net/ipv6/addrconf.c:3699 notifier_call_chain kernel/notifier.c:93 [inline] raw_notifier_call_chain+0xe4/0x430 kernel/notifier.c:461 call_netdevice_notifiers_info net/core/dev.c:1935 [inline] call_netdevice_notifiers_extack net/core/dev.c:1973 [inline] call_netdevice_notifiers+0x1ee/0x2d0 net/core/dev.c:1987 bond_enslave+0xccd/0x53f0 drivers/net/bonding/bond_main.c:1906 do_set_master net/core/rtnetlink.c:2626 [inline] rtnl_newlink_create net/core/rtnetlink.c:3460 [inline] __rtnl_newlink net/core/rtnetlink.c:3660 [inline] rtnl_newlink+0x378c/0x40e0 net/core/rtnetlink.c:3673 rtnetlink_rcv_msg+0x16a6/0x1840 net/core/rtnetlink.c:6395 netlink_rcv_skb+0x371/0x650 net/netlink/af_netlink.c:2546 rtnetlink_rcv+0x34/0x40 net/core/rtnetlink.c:6413 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0xf28/0x1230 net/netlink/af_ ---truncated--- | ||||
| CVE-2022-50676 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net: rds: don't hold sock lock when cancelling work from rds_tcp_reset_callbacks() syzbot is reporting lockdep warning at rds_tcp_reset_callbacks() [1], for commit ac3615e7f3cffe2a ("RDS: TCP: Reduce code duplication in rds_tcp_reset_callbacks()") added cancel_delayed_work_sync() into a section protected by lock_sock() without realizing that rds_send_xmit() might call lock_sock(). We don't need to protect cancel_delayed_work_sync() using lock_sock(), for even if rds_{send,recv}_worker() re-queued this work while __flush_work() from cancel_delayed_work_sync() was waiting for this work to complete, retried rds_{send,recv}_worker() is no-op due to the absence of RDS_CONN_UP bit. | ||||
| CVE-2022-50635 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: powerpc/kprobes: Fix null pointer reference in arch_prepare_kprobe() I found a null pointer reference in arch_prepare_kprobe(): # echo 'p cmdline_proc_show' > kprobe_events # echo 'p cmdline_proc_show+16' >> kprobe_events Kernel attempted to read user page (0) - exploit attempt? (uid: 0) BUG: Kernel NULL pointer dereference on read at 0x00000000 Faulting instruction address: 0xc000000000050bfc Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV Modules linked in: CPU: 0 PID: 122 Comm: sh Not tainted 6.0.0-rc3-00007-gdcf8e5633e2e #10 NIP: c000000000050bfc LR: c000000000050bec CTR: 0000000000005bdc REGS: c0000000348475b0 TRAP: 0300 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e) MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 88002444 XER: 20040006 CFAR: c00000000022d100 DAR: 0000000000000000 DSISR: 40000000 IRQMASK: 0 ... NIP arch_prepare_kprobe+0x10c/0x2d0 LR arch_prepare_kprobe+0xfc/0x2d0 Call Trace: 0xc0000000012f77a0 (unreliable) register_kprobe+0x3c0/0x7a0 __register_trace_kprobe+0x140/0x1a0 __trace_kprobe_create+0x794/0x1040 trace_probe_create+0xc4/0xe0 create_or_delete_trace_kprobe+0x2c/0x80 trace_parse_run_command+0xf0/0x210 probes_write+0x20/0x40 vfs_write+0xfc/0x450 ksys_write+0x84/0x140 system_call_exception+0x17c/0x3a0 system_call_vectored_common+0xe8/0x278 --- interrupt: 3000 at 0x7fffa5682de0 NIP: 00007fffa5682de0 LR: 0000000000000000 CTR: 0000000000000000 REGS: c000000034847e80 TRAP: 3000 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e) MSR: 900000000280f033 <SF,HV,VEC,VSX,EE,PR,FP,ME,IR,DR,RI,LE> CR: 44002408 XER: 00000000 The address being probed has some special: cmdline_proc_show: Probe based on ftrace cmdline_proc_show+16: Probe for the next instruction at the ftrace location The ftrace-based kprobe does not generate kprobe::ainsn::insn, it gets set to NULL. In arch_prepare_kprobe() it will check for: ... prev = get_kprobe(p->addr - 1); preempt_enable_no_resched(); if (prev && ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) { ... If prev is based on ftrace, 'ppc_inst_read(prev->ainsn.insn)' will occur with a null pointer reference. At this point prev->addr will not be a prefixed instruction, so the check can be skipped. Check if prev is ftrace-based kprobe before reading 'prev->ainsn.insn' to fix this problem. [mpe: Trim oops] | ||||
| CVE-2022-50634 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: power: supply: cw2015: Fix potential null-ptr-deref in cw_bat_probe() cw_bat_probe() calls create_singlethread_workqueue() and not checked the ret value, which may return NULL. And a null-ptr-deref may happen: cw_bat_probe() create_singlethread_workqueue() # failed, cw_bat->wq is NULL queue_delayed_work() queue_delayed_work_on() __queue_delayed_work() # warning here, but continue __queue_work() # access wq->flags, null-ptr-deref Check the ret value and return -ENOMEM if it is NULL. | ||||
| CVE-2022-50639 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: io-wq: Fix memory leak in worker creation If the CPU mask allocation for a node fails, then the memory allocated for the 'io_wqe' struct of the current node doesn't get freed on the error handling path, since it has not yet been added to the 'wqes' array. This was spotted when fuzzing v6.1-rc1 with Syzkaller: BUG: memory leak unreferenced object 0xffff8880093d5000 (size 1024): comm "syz-executor.2", pid 7701, jiffies 4295048595 (age 13.900s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000cb463369>] __kmem_cache_alloc_node+0x18e/0x720 [<00000000147a3f9c>] kmalloc_node_trace+0x2a/0x130 [<000000004e107011>] io_wq_create+0x7b9/0xdc0 [<00000000c38b2018>] io_uring_alloc_task_context+0x31e/0x59d [<00000000867399da>] __io_uring_add_tctx_node.cold+0x19/0x1ba [<000000007e0e7a79>] io_uring_setup.cold+0x1b80/0x1dce [<00000000b545e9f6>] __x64_sys_io_uring_setup+0x5d/0x80 [<000000008a8a7508>] do_syscall_64+0x5d/0x90 [<000000004ac08bec>] entry_SYSCALL_64_after_hwframe+0x63/0xcd | ||||
| CVE-2022-50640 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: mmc: core: Fix kernel panic when remove non-standard SDIO card SDIO tuple is only allocated for standard SDIO card, especially it causes memory corruption issues when the non-standard SDIO card has removed, which is because the card device's reference counter does not increase for it at sdio_init_func(), but all SDIO card device reference counter gets decreased at sdio_release_func(). | ||||
| CVE-2022-50642 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: platform/chrome: cros_ec_typec: zero out stale pointers `cros_typec_get_switch_handles` allocates four pointers when obtaining type-c switch handles. These pointers are all freed if failing to obtain any of them; therefore, pointers in `port` become stale. The stale pointers eventually cause use-after-free or double free in later code paths. Zeroing out all pointer fields after freeing to eliminate these stale pointers. | ||||
| CVE-2022-50643 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cifs: Fix xid leak in cifs_copy_file_range() If the file is used by swap, before return -EOPNOTSUPP, should free the xid, otherwise, the xid will be leaked. | ||||
| CVE-2022-50644 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: clk: ti: dra7-atl: Fix reference leak in of_dra7_atl_clk_probe pm_runtime_get_sync() will increment pm usage counter. Forgetting to putting operation will result in reference leak. Add missing pm_runtime_put_sync in some error paths. | ||||
| CVE-2022-50645 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: EDAC/i10nm: fix refcount leak in pci_get_dev_wrapper() As the comment of pci_get_domain_bus_and_slot() says, it returns a PCI device with refcount incremented, so it doesn't need to call an extra pci_dev_get() in pci_get_dev_wrapper(), and the PCI device needs to be put in the error path. | ||||
| CVE-2022-50646 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: hpsa: Fix possible memory leak in hpsa_init_one() The hpda_alloc_ctlr_info() allocates h and its field reply_map. However, in hpsa_init_one(), if alloc_percpu() failed, the hpsa_init_one() jumps to clean1 directly, which frees h and leaks the h->reply_map. Fix by calling hpda_free_ctlr_info() to release h->replay_map and h instead free h directly. | ||||