Filtered by vendor Linux
Subscriptions
Total
16909 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-68169 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: netpoll: Fix deadlock in memory allocation under spinlock Fix a AA deadlock in refill_skbs() where memory allocation while holding skb_pool->lock can trigger a recursive lock acquisition attempt. The deadlock scenario occurs when the system is under severe memory pressure: 1. refill_skbs() acquires skb_pool->lock (spinlock) 2. alloc_skb() is called while holding the lock 3. Memory allocator fails and calls slab_out_of_memory() 4. This triggers printk() for the OOM warning 5. The console output path calls netpoll_send_udp() 6. netpoll_send_udp() attempts to acquire the same skb_pool->lock 7. Deadlock: the lock is already held by the same CPU Call stack: refill_skbs() spin_lock_irqsave(&skb_pool->lock) <- lock acquired __alloc_skb() kmem_cache_alloc_node_noprof() slab_out_of_memory() printk() console_flush_all() netpoll_send_udp() skb_dequeue() spin_lock_irqsave(&skb_pool->lock) <- deadlock attempt This bug was exposed by commit 248f6571fd4c51 ("netpoll: Optimize skb refilling on critical path") which removed refill_skbs() from the critical path (where nested printk was being deferred), letting nested printk being called from inside refill_skbs() Refactor refill_skbs() to never allocate memory while holding the spinlock. Another possible solution to fix this problem is protecting the refill_skbs() from nested printks, basically calling printk_deferred_{enter,exit}() in refill_skbs(), then, any nested pr_warn() would be deferred. I prefer this approach, given I _think_ it might be a good idea to move the alloc_skb() from GFP_ATOMIC to GFP_KERNEL in the future, so, having the alloc_skb() outside of the lock will be necessary step. There is a possible TOCTOU issue when checking for the pool length, and queueing the new allocated skb, but, this is not an issue, given that an extra SKB in the pool is harmless and it will be eventually used. | ||||
| CVE-2025-68170 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/radeon: Do not kfree() devres managed rdev Since the allocation of the drivers main structure was changed to devm_drm_dev_alloc() rdev is managed by devres and we shouldn't be calling kfree() on it. This fixes things exploding if the driver probe fails and devres cleans up the rdev after we already free'd it. (cherry picked from commit 16c0681617b8a045773d4d87b6140002fa75b03b) | ||||
| CVE-2025-68179 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: s390: Disable ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP As reported by Luiz Capitulino enabling HVO on s390 leads to reproducible crashes. The problem is that kernel page tables are modified without flushing corresponding TLB entries. Even if it looks like the empty flush_tlb_all() implementation on s390 is the problem, it is actually a different problem: on s390 it is not allowed to replace an active/valid page table entry with another valid page table entry without the detour over an invalid entry. A direct replacement may lead to random crashes and/or data corruption. In order to invalidate an entry special instructions have to be used (e.g. ipte or idte). Alternatively there are also special instructions available which allow to replace a valid entry with a different valid entry (e.g. crdte or cspg). Given that the HVO code currently does not provide the hooks to allow for an implementation which is compliant with the s390 architecture requirements, disable ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP again, which is basically a revert of the original patch which enabled it. | ||||
| CVE-2025-68181 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/radeon: Remove calls to drm_put_dev() Since the allocation of the drivers main structure was changed to devm_drm_dev_alloc() drm_put_dev()'ing to trigger it to be free'd should be done by devres. However, drm_put_dev() is still in the probe error and device remove paths. When the driver fails to probe warnings like the following are shown because devres is trying to drm_put_dev() after the driver already did it. [ 5.642230] radeon 0000:01:05.0: probe with driver radeon failed with error -22 [ 5.649605] ------------[ cut here ]------------ [ 5.649607] refcount_t: underflow; use-after-free. [ 5.649620] WARNING: CPU: 0 PID: 357 at lib/refcount.c:28 refcount_warn_saturate+0xbe/0x110 (cherry picked from commit 3eb8c0b4c091da0a623ade0d3ee7aa4a93df1ea4) | ||||
| CVE-2025-68186 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Do not warn in ring_buffer_map_get_reader() when reader catches up The function ring_buffer_map_get_reader() is a bit more strict than the other get reader functions, and except for certain situations the rb_get_reader_page() should not return NULL. If it does, it triggers a warning. This warning was triggering but after looking at why, it was because another acceptable situation was happening and it wasn't checked for. If the reader catches up to the writer and there's still data to be read on the reader page, then the rb_get_reader_page() will return NULL as there's no new page to get. In this situation, the reader page should not be updated and no warning should trigger. | ||||
| CVE-2025-68187 | 1 Linux | 1 Linux Kernel | 2025-12-18 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: net: mdio: Check regmap pointer returned by device_node_to_regmap() The call to device_node_to_regmap() in airoha_mdio_probe() can return an ERR_PTR() if regmap initialization fails. Currently, the driver stores the pointer without validation, which could lead to a crash if it is later dereferenced. Add an IS_ERR() check and return the corresponding error code to make the probe path more robust. | ||||
| CVE-2025-68189 | 1 Linux | 1 Linux Kernel | 2025-12-18 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: drm/msm: Fix GEM free for imported dma-bufs Imported dma-bufs also have obj->resv != &obj->_resv. So we should check both this condition in addition to flags for handling the _NO_SHARE case. Fixes this splat that was reported with IRIS video playback: ------------[ cut here ]------------ WARNING: CPU: 3 PID: 2040 at drivers/gpu/drm/msm/msm_gem.c:1127 msm_gem_free_object+0x1f8/0x264 [msm] CPU: 3 UID: 1000 PID: 2040 Comm: .gnome-shell-wr Not tainted 6.17.0-rc7 #1 PREEMPT pstate: 81400005 (Nzcv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) pc : msm_gem_free_object+0x1f8/0x264 [msm] lr : msm_gem_free_object+0x138/0x264 [msm] sp : ffff800092a1bb30 x29: ffff800092a1bb80 x28: ffff800092a1bce8 x27: ffffbc702dbdbe08 x26: 0000000000000008 x25: 0000000000000009 x24: 00000000000000a6 x23: ffff00083c72f850 x22: ffff00083c72f868 x21: ffff00087e69f200 x20: ffff00087e69f330 x19: ffff00084d157ae0 x18: 0000000000000000 x17: 0000000000000000 x16: ffffbc704bd46b80 x15: 0000ffffd0959540 x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 x11: ffffbc702e6cdb48 x10: 0000000000000000 x9 : 000000000000003f x8 : ffff800092a1ba90 x7 : 0000000000000000 x6 : 0000000000000020 x5 : ffffbc704bd46c40 x4 : fffffdffe102cf60 x3 : 0000000000400032 x2 : 0000000000020000 x1 : ffff00087e6978e8 x0 : ffff00087e6977e8 Call trace: msm_gem_free_object+0x1f8/0x264 [msm] (P) drm_gem_object_free+0x1c/0x30 [drm] drm_gem_object_handle_put_unlocked+0x138/0x150 [drm] drm_gem_object_release_handle+0x5c/0xcc [drm] drm_gem_handle_delete+0x68/0xbc [drm] drm_gem_close_ioctl+0x34/0x40 [drm] drm_ioctl_kernel+0xc0/0x130 [drm] drm_ioctl+0x360/0x4e0 [drm] __arm64_sys_ioctl+0xac/0x104 invoke_syscall+0x48/0x104 el0_svc_common.constprop.0+0x40/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x34/0xec el0t_64_sync_handler+0xa0/0xe4 el0t_64_sync+0x198/0x19c ---[ end trace 0000000000000000 ]--- ------------[ cut here ]------------ Patchwork: https://patchwork.freedesktop.org/patch/676273/ | ||||
| CVE-2025-68195 | 1 Linux | 1 Linux Kernel | 2025-12-18 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Add missing terminator for zen5_rdseed_microcode Running x86_match_min_microcode_rev() on a Zen5 CPU trips up KASAN for an out of bounds access. | ||||
| CVE-2025-68198 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: crash: fix crashkernel resource shrink When crashkernel is configured with a high reservation, shrinking its value below the low crashkernel reservation causes two issues: 1. Invalid crashkernel resource objects 2. Kernel crash if crashkernel shrinking is done twice For example, with crashkernel=200M,high, the kernel reserves 200MB of high memory and some default low memory (say 256MB). The reservation appears as: cat /proc/iomem | grep -i crash af000000-beffffff : Crash kernel 433000000-43f7fffff : Crash kernel If crashkernel is then shrunk to 50MB (echo 52428800 > /sys/kernel/kexec_crash_size), /proc/iomem still shows 256MB reserved: af000000-beffffff : Crash kernel Instead, it should show 50MB: af000000-b21fffff : Crash kernel Further shrinking crashkernel to 40MB causes a kernel crash with the following trace (x86): BUG: kernel NULL pointer dereference, address: 0000000000000038 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI <snip...> Call Trace: <TASK> ? __die_body.cold+0x19/0x27 ? page_fault_oops+0x15a/0x2f0 ? search_module_extables+0x19/0x60 ? search_bpf_extables+0x5f/0x80 ? exc_page_fault+0x7e/0x180 ? asm_exc_page_fault+0x26/0x30 ? __release_resource+0xd/0xb0 release_resource+0x26/0x40 __crash_shrink_memory+0xe5/0x110 crash_shrink_memory+0x12a/0x190 kexec_crash_size_store+0x41/0x80 kernfs_fop_write_iter+0x141/0x1f0 vfs_write+0x294/0x460 ksys_write+0x6d/0xf0 <snip...> This happens because __crash_shrink_memory()/kernel/crash_core.c incorrectly updates the crashk_res resource object even when crashk_low_res should be updated. Fix this by ensuring the correct crashkernel resource object is updated when shrinking crashkernel memory. | ||||
| CVE-2025-68202 | 1 Linux | 1 Linux Kernel | 2025-12-18 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: sched_ext: Fix unsafe locking in the scx_dump_state() For built with CONFIG_PREEMPT_RT=y kernels, the dump_lock will be converted sleepable spinlock and not disable-irq, so the following scenarios occur: inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. irq_work/0/27 [HC0[0]:SC0[0]:HE1:SE1] takes: (&rq->__lock){?...}-{2:2}, at: raw_spin_rq_lock_nested+0x2b/0x40 {IN-HARDIRQ-W} state was registered at: lock_acquire+0x1e1/0x510 _raw_spin_lock_nested+0x42/0x80 raw_spin_rq_lock_nested+0x2b/0x40 sched_tick+0xae/0x7b0 update_process_times+0x14c/0x1b0 tick_periodic+0x62/0x1f0 tick_handle_periodic+0x48/0xf0 timer_interrupt+0x55/0x80 __handle_irq_event_percpu+0x20a/0x5c0 handle_irq_event_percpu+0x18/0xc0 handle_irq_event+0xb5/0x150 handle_level_irq+0x220/0x460 __common_interrupt+0xa2/0x1e0 common_interrupt+0xb0/0xd0 asm_common_interrupt+0x2b/0x40 _raw_spin_unlock_irqrestore+0x45/0x80 __setup_irq+0xc34/0x1a30 request_threaded_irq+0x214/0x2f0 hpet_time_init+0x3e/0x60 x86_late_time_init+0x5b/0xb0 start_kernel+0x308/0x410 x86_64_start_reservations+0x1c/0x30 x86_64_start_kernel+0x96/0xa0 common_startup_64+0x13e/0x148 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&rq->__lock); <Interrupt> lock(&rq->__lock); *** DEADLOCK *** stack backtrace: CPU: 0 UID: 0 PID: 27 Comm: irq_work/0 Call Trace: <TASK> dump_stack_lvl+0x8c/0xd0 dump_stack+0x14/0x20 print_usage_bug+0x42e/0x690 mark_lock.part.44+0x867/0xa70 ? __pfx_mark_lock.part.44+0x10/0x10 ? string_nocheck+0x19c/0x310 ? number+0x739/0x9f0 ? __pfx_string_nocheck+0x10/0x10 ? __pfx_check_pointer+0x10/0x10 ? kvm_sched_clock_read+0x15/0x30 ? sched_clock_noinstr+0xd/0x20 ? local_clock_noinstr+0x1c/0xe0 __lock_acquire+0xc4b/0x62b0 ? __pfx_format_decode+0x10/0x10 ? __pfx_string+0x10/0x10 ? __pfx___lock_acquire+0x10/0x10 ? __pfx_vsnprintf+0x10/0x10 lock_acquire+0x1e1/0x510 ? raw_spin_rq_lock_nested+0x2b/0x40 ? __pfx_lock_acquire+0x10/0x10 ? dump_line+0x12e/0x270 ? raw_spin_rq_lock_nested+0x20/0x40 _raw_spin_lock_nested+0x42/0x80 ? raw_spin_rq_lock_nested+0x2b/0x40 raw_spin_rq_lock_nested+0x2b/0x40 scx_dump_state+0x3b3/0x1270 ? finish_task_switch+0x27e/0x840 scx_ops_error_irq_workfn+0x67/0x80 irq_work_single+0x113/0x260 irq_work_run_list.part.3+0x44/0x70 run_irq_workd+0x6b/0x90 ? __pfx_run_irq_workd+0x10/0x10 smpboot_thread_fn+0x529/0x870 ? __pfx_smpboot_thread_fn+0x10/0x10 kthread+0x305/0x3f0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x40/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> This commit therefore use rq_lock_irqsave/irqrestore() to replace rq_lock/unlock() in the scx_dump_state(). | ||||
| CVE-2025-40348 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: slab: Avoid race on slab->obj_exts in alloc_slab_obj_exts If two competing threads enter alloc_slab_obj_exts() and one of them fails to allocate the object extension vector, it might override the valid slab->obj_exts allocated by the other thread with OBJEXTS_ALLOC_FAIL. This will cause the thread that lost this race and expects a valid pointer to dereference a NULL pointer later on. Update slab->obj_exts atomically using cmpxchg() to avoid slab->obj_exts overrides by racing threads. Thanks for Vlastimil and Suren's help with debugging. | ||||
| CVE-2025-68249 | 1 Linux | 1 Linux Kernel | 2025-12-18 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: most: usb: hdm_probe: Fix calling put_device() before device initialization The early error path in hdm_probe() can jump to err_free_mdev before &mdev->dev has been initialized with device_initialize(). Calling put_device(&mdev->dev) there triggers a device core WARN and ends up invoking kref_put(&kobj->kref, kobject_release) on an uninitialized kobject. In this path the private struct was only kmalloc'ed and the intended release is effectively kfree(mdev) anyway, so free it directly instead of calling put_device() on an uninitialized device. This removes the WARNING and fixes the pre-initialization error path. | ||||
| CVE-2025-68243 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: NFS: Check the TLS certificate fields in nfs_match_client() If the TLS security policy is of type RPC_XPRTSEC_TLS_X509, then the cert_serial and privkey_serial fields need to match as well since they define the client's identity, as presented to the server. | ||||
| CVE-2025-68242 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: NFS: Fix LTP test failures when timestamps are delegated The utimes01 and utime06 tests fail when delegated timestamps are enabled, specifically in subtests that modify the atime and mtime fields using the 'nobody' user ID. The problem can be reproduced as follow: # echo "/media *(rw,no_root_squash,sync)" >> /etc/exports # export -ra # mount -o rw,nfsvers=4.2 127.0.0.1:/media /tmpdir # cd /opt/ltp # ./runltp -d /tmpdir -s utimes01 # ./runltp -d /tmpdir -s utime06 This issue occurs because nfs_setattr does not verify the inode's UID against the caller's fsuid when delegated timestamps are permitted for the inode. This patch adds the UID check and if it does not match then the request is sent to the server for permission checking. | ||||
| CVE-2025-68240 | 1 Linux | 1 Linux Kernel | 2025-12-18 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: nilfs2: avoid having an active sc_timer before freeing sci Because kthread_stop did not stop sc_task properly and returned -EINTR, the sc_timer was not properly closed, ultimately causing the problem [1] reported by syzbot when freeing sci due to the sc_timer not being closed. Because the thread sc_task main function nilfs_segctor_thread() returns 0 when it succeeds, when the return value of kthread_stop() is not 0 in nilfs_segctor_destroy(), we believe that it has not properly closed sc_timer. We use timer_shutdown_sync() to sync wait for sc_timer to shutdown, and set the value of sc_task to NULL under the protection of lock sc_state_lock, so as to avoid the issue caused by sc_timer not being properly shutdowned. [1] ODEBUG: free active (active state 0) object: 00000000dacb411a object type: timer_list hint: nilfs_construction_timeout Call trace: nilfs_segctor_destroy fs/nilfs2/segment.c:2811 [inline] nilfs_detach_log_writer+0x668/0x8cc fs/nilfs2/segment.c:2877 nilfs_put_super+0x4c/0x12c fs/nilfs2/super.c:509 | ||||
| CVE-2025-68227 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mptcp: Fix proto fallback detection with BPF The sockmap feature allows bpf syscall from userspace, or based on bpf sockops, replacing the sk_prot of sockets during protocol stack processing with sockmap's custom read/write interfaces. ''' tcp_rcv_state_process() syn_recv_sock()/subflow_syn_recv_sock() tcp_init_transfer(BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB) bpf_skops_established <== sockops bpf_sock_map_update(sk) <== call bpf helper tcp_bpf_update_proto() <== update sk_prot ''' When the server has MPTCP enabled but the client sends a TCP SYN without MPTCP, subflow_syn_recv_sock() performs a fallback on the subflow, replacing the subflow sk's sk_prot with the native sk_prot. ''' subflow_syn_recv_sock() subflow_ulp_fallback() subflow_drop_ctx() mptcp_subflow_ops_undo_override() ''' Then, this subflow can be normally used by sockmap, which replaces the native sk_prot with sockmap's custom sk_prot. The issue occurs when the user executes accept::mptcp_stream_accept::mptcp_fallback_tcp_ops(). Here, it uses sk->sk_prot to compare with the native sk_prot, but this is incorrect when sockmap is used, as we may incorrectly set sk->sk_socket->ops. This fix uses the more generic sk_family for the comparison instead. Additionally, this also prevents a WARNING from occurring: result from ./scripts/decode_stacktrace.sh: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 337 at net/mptcp/protocol.c:68 mptcp_stream_accept \ (net/mptcp/protocol.c:4005) Modules linked in: ... PKRU: 55555554 Call Trace: <TASK> do_accept (net/socket.c:1989) __sys_accept4 (net/socket.c:2028 net/socket.c:2057) __x64_sys_accept (net/socket.c:2067) x64_sys_call (arch/x86/entry/syscall_64.c:41) do_syscall_64 (arch/x86/entry/syscall_64.c:63 arch/x86/entry/syscall_64.c:94) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) RIP: 0033:0x7f87ac92b83d ---[ end trace 0000000000000000 ]--- | ||||
| CVE-2025-68294 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: io_uring/net: ensure vectored buffer node import is tied to notification When support for vectored registered buffers was added, the import itself is using 'req' rather than the notification io_kiocb, sr->notif. For non-vectored imports, sr->notif is correctly used. This is important as the lifetime of the two may be different. Use the correct io_kiocb for the vectored buffer import. | ||||
| CVE-2025-68310 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: s390/pci: Avoid deadlock between PCI error recovery and mlx5 crdump Do not block PCI config accesses through pci_cfg_access_lock() when executing the s390 variant of PCI error recovery: Acquire just device_lock() instead of pci_dev_lock() as powerpc's EEH and generig PCI AER processing do. During error recovery testing a pair of tasks was reported to be hung: mlx5_core 0000:00:00.1: mlx5_health_try_recover:338:(pid 5553): health recovery flow aborted, PCI reads still not working INFO: task kmcheck:72 blocked for more than 122 seconds. Not tainted 5.14.0-570.12.1.bringup7.el9.s390x #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kmcheck state:D stack:0 pid:72 tgid:72 ppid:2 flags:0x00000000 Call Trace: [<000000065256f030>] __schedule+0x2a0/0x590 [<000000065256f356>] schedule+0x36/0xe0 [<000000065256f572>] schedule_preempt_disabled+0x22/0x30 [<0000000652570a94>] __mutex_lock.constprop.0+0x484/0x8a8 [<000003ff800673a4>] mlx5_unload_one+0x34/0x58 [mlx5_core] [<000003ff8006745c>] mlx5_pci_err_detected+0x94/0x140 [mlx5_core] [<0000000652556c5a>] zpci_event_attempt_error_recovery+0xf2/0x398 [<0000000651b9184a>] __zpci_event_error+0x23a/0x2c0 INFO: task kworker/u1664:6:1514 blocked for more than 122 seconds. Not tainted 5.14.0-570.12.1.bringup7.el9.s390x #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u1664:6 state:D stack:0 pid:1514 tgid:1514 ppid:2 flags:0x00000000 Workqueue: mlx5_health0000:00:00.0 mlx5_fw_fatal_reporter_err_work [mlx5_core] Call Trace: [<000000065256f030>] __schedule+0x2a0/0x590 [<000000065256f356>] schedule+0x36/0xe0 [<0000000652172e28>] pci_wait_cfg+0x80/0xe8 [<0000000652172f94>] pci_cfg_access_lock+0x74/0x88 [<000003ff800916b6>] mlx5_vsc_gw_lock+0x36/0x178 [mlx5_core] [<000003ff80098824>] mlx5_crdump_collect+0x34/0x1c8 [mlx5_core] [<000003ff80074b62>] mlx5_fw_fatal_reporter_dump+0x6a/0xe8 [mlx5_core] [<0000000652512242>] devlink_health_do_dump.part.0+0x82/0x168 [<0000000652513212>] devlink_health_report+0x19a/0x230 [<000003ff80075a12>] mlx5_fw_fatal_reporter_err_work+0xba/0x1b0 [mlx5_core] No kernel log of the exact same error with an upstream kernel is available - but the very same deadlock situation can be constructed there, too: - task: kmcheck mlx5_unload_one() tries to acquire devlink lock while the PCI error recovery code has set pdev->block_cfg_access by way of pci_cfg_access_lock() - task: kworker mlx5_crdump_collect() tries to set block_cfg_access through pci_cfg_access_lock() while devlink_health_report() had acquired the devlink lock. A similar deadlock situation can be reproduced by requesting a crdump with > devlink health dump show pci/<BDF> reporter fw_fatal while PCI error recovery is executed on the same <BDF> physical function by mlx5_core's pci_error_handlers. On s390 this can be injected with > zpcictl --reset-fw <BDF> Tests with this patch failed to reproduce that second deadlock situation, the devlink command is rejected with "kernel answers: Permission denied" - and we get a kernel log message of: mlx5_core 1ed0:00:00.1: mlx5_crdump_collect:50:(pid 254382): crdump: failed to lock vsc gw err -5 because the config read of VSC_SEMAPHORE is rejected by the underlying hardware. Two prior attempts to address this issue have been discussed and ultimately rejected [see link], with the primary argument that s390's implementation of PCI error recovery is imposing restrictions that neither powerpc's EEH nor PCI AER handling need. Tests show that PCI error recovery on s390 is running to completion even without blocking access to PCI config space. | ||||
| CVE-2025-68214 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: timers: Fix NULL function pointer race in timer_shutdown_sync() There is a race condition between timer_shutdown_sync() and timer expiration that can lead to hitting a WARN_ON in expire_timers(). The issue occurs when timer_shutdown_sync() clears the timer function to NULL while the timer is still running on another CPU. The race scenario looks like this: CPU0 CPU1 <SOFTIRQ> lock_timer_base() expire_timers() base->running_timer = timer; unlock_timer_base() [call_timer_fn enter] mod_timer() ... timer_shutdown_sync() lock_timer_base() // For now, will not detach the timer but only clear its function to NULL if (base->running_timer != timer) ret = detach_if_pending(timer, base, true); if (shutdown) timer->function = NULL; unlock_timer_base() [call_timer_fn exit] lock_timer_base() base->running_timer = NULL; unlock_timer_base() ... // Now timer is pending while its function set to NULL. // next timer trigger <SOFTIRQ> expire_timers() WARN_ON_ONCE(!fn) // hit ... lock_timer_base() // Now timer will detach if (base->running_timer != timer) ret = detach_if_pending(timer, base, true); if (shutdown) timer->function = NULL; unlock_timer_base() The problem is that timer_shutdown_sync() clears the timer function regardless of whether the timer is currently running. This can leave a pending timer with a NULL function pointer, which triggers the WARN_ON_ONCE(!fn) check in expire_timers(). Fix this by only clearing the timer function when actually detaching the timer. If the timer is running, leave the function pointer intact, which is safe because the timer will be properly detached when it finishes running. | ||||
| CVE-2025-68217 | 1 Linux | 1 Linux Kernel | 2025-12-18 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: Input: pegasus-notetaker - fix potential out-of-bounds access In the pegasus_notetaker driver, the pegasus_probe() function allocates the URB transfer buffer using the wMaxPacketSize value from the endpoint descriptor. An attacker can use a malicious USB descriptor to force the allocation of a very small buffer. Subsequently, if the device sends an interrupt packet with a specific pattern (e.g., where the first byte is 0x80 or 0x42), the pegasus_parse_packet() function parses the packet without checking the allocated buffer size. This leads to an out-of-bounds memory access. | ||||