Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 16738 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-54001 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: staging: r8712: Fix memory leak in _r8712_init_xmit_priv() In the above mentioned routine, memory is allocated in several places. If the first succeeds and a later one fails, the routine will leak memory. This patch fixes commit 2865d42c78a9 ("staging: r8712u: Add the new driver to the mainline kernel"). A potential memory leak in r8712_xmit_resource_alloc() is also addressed.
CVE-2022-50705 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring/rw: defer fsnotify calls to task context We can't call these off the kiocb completion as that might be off soft/hard irq context. Defer the calls to when we process the task_work for this request. That avoids valid complaints like: stack backtrace: CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.0.0-rc6-syzkaller-00321-g105a36f3694e #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_usage_bug kernel/locking/lockdep.c:3961 [inline] valid_state kernel/locking/lockdep.c:3973 [inline] mark_lock_irq kernel/locking/lockdep.c:4176 [inline] mark_lock.part.0.cold+0x18/0xd8 kernel/locking/lockdep.c:4632 mark_lock kernel/locking/lockdep.c:4596 [inline] mark_usage kernel/locking/lockdep.c:4527 [inline] __lock_acquire+0x11d9/0x56d0 kernel/locking/lockdep.c:5007 lock_acquire kernel/locking/lockdep.c:5666 [inline] lock_acquire+0x1ab/0x570 kernel/locking/lockdep.c:5631 __fs_reclaim_acquire mm/page_alloc.c:4674 [inline] fs_reclaim_acquire+0x115/0x160 mm/page_alloc.c:4688 might_alloc include/linux/sched/mm.h:271 [inline] slab_pre_alloc_hook mm/slab.h:700 [inline] slab_alloc mm/slab.c:3278 [inline] __kmem_cache_alloc_lru mm/slab.c:3471 [inline] kmem_cache_alloc+0x39/0x520 mm/slab.c:3491 fanotify_alloc_fid_event fs/notify/fanotify/fanotify.c:580 [inline] fanotify_alloc_event fs/notify/fanotify/fanotify.c:813 [inline] fanotify_handle_event+0x1130/0x3f40 fs/notify/fanotify/fanotify.c:948 send_to_group fs/notify/fsnotify.c:360 [inline] fsnotify+0xafb/0x1680 fs/notify/fsnotify.c:570 __fsnotify_parent+0x62f/0xa60 fs/notify/fsnotify.c:230 fsnotify_parent include/linux/fsnotify.h:77 [inline] fsnotify_file include/linux/fsnotify.h:99 [inline] fsnotify_access include/linux/fsnotify.h:309 [inline] __io_complete_rw_common+0x485/0x720 io_uring/rw.c:195 io_complete_rw+0x1a/0x1f0 io_uring/rw.c:228 iomap_dio_complete_work fs/iomap/direct-io.c:144 [inline] iomap_dio_bio_end_io+0x438/0x5e0 fs/iomap/direct-io.c:178 bio_endio+0x5f9/0x780 block/bio.c:1564 req_bio_endio block/blk-mq.c:695 [inline] blk_update_request+0x3fc/0x1300 block/blk-mq.c:825 scsi_end_request+0x7a/0x9a0 drivers/scsi/scsi_lib.c:541 scsi_io_completion+0x173/0x1f70 drivers/scsi/scsi_lib.c:971 scsi_complete+0x122/0x3b0 drivers/scsi/scsi_lib.c:1438 blk_complete_reqs+0xad/0xe0 block/blk-mq.c:1022 __do_softirq+0x1d3/0x9c6 kernel/softirq.c:571 invoke_softirq kernel/softirq.c:445 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:650 irq_exit_rcu+0x5/0x20 kernel/softirq.c:662 common_interrupt+0xa9/0xc0 arch/x86/kernel/irq.c:240
CVE-2022-50706 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/ieee802154: don't warn zero-sized raw_sendmsg() syzbot is hitting skb_assert_len() warning at __dev_queue_xmit() [1], for PF_IEEE802154 socket's zero-sized raw_sendmsg() request is hitting __dev_queue_xmit() with skb->len == 0. Since PF_IEEE802154 socket's zero-sized raw_sendmsg() request was able to return 0, don't call __dev_queue_xmit() if packet length is 0. ---------- #include <sys/socket.h> #include <netinet/in.h> int main(int argc, char *argv[]) { struct sockaddr_in addr = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_LOOPBACK) }; struct iovec iov = { }; struct msghdr hdr = { .msg_name = &addr, .msg_namelen = sizeof(addr), .msg_iov = &iov, .msg_iovlen = 1 }; sendmsg(socket(PF_IEEE802154, SOCK_RAW, 0), &hdr, 0); return 0; } ---------- Note that this might be a sign that commit fd1894224407c484 ("bpf: Don't redirect packets with invalid pkt_len") should be reverted, for skb->len == 0 was acceptable for at least PF_IEEE802154 socket.
CVE-2025-68353 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: vxlan: prevent NULL deref in vxlan_xmit_one Neither sock4 nor sock6 pointers are guaranteed to be non-NULL in vxlan_xmit_one, e.g. if the iface is brought down. This can lead to the following NULL dereference: BUG: kernel NULL pointer dereference, address: 0000000000000010 Oops: Oops: 0000 [#1] SMP NOPTI RIP: 0010:vxlan_xmit_one+0xbb3/0x1580 Call Trace: vxlan_xmit+0x429/0x610 dev_hard_start_xmit+0x55/0xa0 __dev_queue_xmit+0x6d0/0x7f0 ip_finish_output2+0x24b/0x590 ip_output+0x63/0x110 Mentioned commits changed the code path in vxlan_xmit_one and as a side effect the sock4/6 pointer validity checks in vxlan(6)_get_route were lost. Fix this by adding back checks. Since both commits being fixed were released in the same version (v6.7) and are strongly related, bundle the fixes in a single commit.
CVE-2022-50707 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: virtio-crypto: fix memory leak in virtio_crypto_alg_skcipher_close_session() 'vc_ctrl_req' is alloced in virtio_crypto_alg_skcipher_close_session(), and should be freed in the invalid ctrl_status->status error handling case. Otherwise there is a memory leak.
CVE-2025-68352 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: spi: ch341: fix out-of-bounds memory access in ch341_transfer_one Discovered by Atuin - Automated Vulnerability Discovery Engine. The 'len' variable is calculated as 'min(32, trans->len + 1)', which includes the 1-byte command header. When copying data from 'trans->tx_buf' to 'ch341->tx_buf + 1', using 'len' as the length is incorrect because: 1. It causes an out-of-bounds read from 'trans->tx_buf' (which has size 'trans->len', i.e., 'len - 1' in this context). 2. It can cause an out-of-bounds write to 'ch341->tx_buf' if 'len' is CH341_PACKET_LENGTH (32). Writing 32 bytes to ch341->tx_buf + 1 overflows the buffer. Fix this by copying 'len - 1' bytes.
CVE-2023-54039 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: can: j1939: j1939_tp_tx_dat_new(): fix out-of-bounds memory access In the j1939_tp_tx_dat_new() function, an out-of-bounds memory access could occur during the memcpy() operation if the size of skb->cb is larger than the size of struct j1939_sk_buff_cb. This is because the memcpy() operation uses the size of skb->cb, leading to a read beyond the struct j1939_sk_buff_cb. Updated the memcpy() operation to use the size of struct j1939_sk_buff_cb instead of the size of skb->cb. This ensures that the memcpy() operation only reads the memory within the bounds of struct j1939_sk_buff_cb, preventing out-of-bounds memory access. Additionally, add a BUILD_BUG_ON() to check that the size of skb->cb is greater than or equal to the size of struct j1939_sk_buff_cb. This ensures that the skb->cb buffer is large enough to hold the j1939_sk_buff_cb structure. [mkl: rephrase commit message]
CVE-2023-53993 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI/DOE: Fix memory leak with CONFIG_DEBUG_OBJECTS=y After a pci_doe_task completes, its work_struct needs to be destroyed to avoid a memory leak with CONFIG_DEBUG_OBJECTS=y.
CVE-2023-54007 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vmci_host: fix a race condition in vmci_host_poll() causing GPF During fuzzing, a general protection fault is observed in vmci_host_poll(). general protection fault, probably for non-canonical address 0xdffffc0000000019: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x00000000000000c8-0x00000000000000cf] RIP: 0010:__lock_acquire+0xf3/0x5e00 kernel/locking/lockdep.c:4926 <- omitting registers -> Call Trace: <TASK> lock_acquire+0x1a4/0x4a0 kernel/locking/lockdep.c:5672 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0xb3/0x100 kernel/locking/spinlock.c:162 add_wait_queue+0x3d/0x260 kernel/sched/wait.c:22 poll_wait include/linux/poll.h:49 [inline] vmci_host_poll+0xf8/0x2b0 drivers/misc/vmw_vmci/vmci_host.c:174 vfs_poll include/linux/poll.h:88 [inline] do_pollfd fs/select.c:873 [inline] do_poll fs/select.c:921 [inline] do_sys_poll+0xc7c/0x1aa0 fs/select.c:1015 __do_sys_ppoll fs/select.c:1121 [inline] __se_sys_ppoll+0x2cc/0x330 fs/select.c:1101 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x4e/0xa0 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Example thread interleaving that causes the general protection fault is as follows: CPU1 (vmci_host_poll) CPU2 (vmci_host_do_init_context) ----- ----- // Read uninitialized context context = vmci_host_dev->context; // Initialize context vmci_host_dev->context = vmci_ctx_create(); vmci_host_dev->ct_type = VMCIOBJ_CONTEXT; if (vmci_host_dev->ct_type == VMCIOBJ_CONTEXT) { // Dereferencing the wrong pointer poll_wait(..., &context->host_context); } In this scenario, vmci_host_poll() reads vmci_host_dev->context first, and then reads vmci_host_dev->ct_type to check that vmci_host_dev->context is initialized. However, since these two reads are not atomically executed, there is a chance of a race condition as described above. To fix this race condition, read vmci_host_dev->context after checking the value of vmci_host_dev->ct_type so that vmci_host_poll() always reads an initialized context.
CVE-2023-54005 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: binder: fix memory leak in binder_init() In binder_init(), the destruction of binder_alloc_shrinker_init() is not performed in the wrong path, which will cause memory leaks. So this commit introduces binder_alloc_shrinker_exit() and calls it in the wrong path to fix that.
CVE-2023-54040 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: fix wrong fallback logic for FDIR When adding a FDIR filter, if ice_vc_fdir_set_irq_ctx returns failure, the inserted fdir entry will not be removed and if ice_vc_fdir_write_fltr returns failure, the fdir context info for irq handler will not be cleared which may lead to inconsistent or memory leak issue. This patch refines failure cases to resolve this issue.
CVE-2023-54022 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix potential memory leaks at error path for UMP open The allocation and initialization errors at alloc_midi_urbs() that is called at MIDI 2.0 / UMP device are supposed to be handled at the caller side by invoking free_midi_urbs(). However, free_midi_urbs() loops only for ep->num_urbs entries, and since ep->num_entries wasn't updated yet at the allocation / init error in alloc_midi_urbs(), this entry won't be released. The intention of free_midi_urbs() is to release the whole elements, so change the loop size to NUM_URBS to scan over all elements for fixing the missed releases. Also, the call of free_midi_urbs() is missing at snd_usb_midi_v2_open(). Although it'll be released later at reopen/close or disconnection, it's better to release immediately at the error path.
CVE-2023-54015 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Devcom, fix error flow in mlx5_devcom_register_device In case devcom allocation is failed, mlx5 is always freeing the priv. However, this priv might have been allocated by a different thread, and freeing it might lead to use-after-free bugs. Fix it by freeing the priv only in case it was allocated by the running thread.
CVE-2025-68348 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: fix memory leak in __blkdev_issue_zero_pages Move the fatal signal check before bio_alloc() to prevent a memory leak when BLKDEV_ZERO_KILLABLE is set and a fatal signal is pending. Previously, the bio was allocated before checking for a fatal signal. If a signal was pending, the code would break out of the loop without freeing or chaining the just-allocated bio, causing a memory leak. This matches the pattern already used in __blkdev_issue_write_zeroes() where the signal check precedes the allocation.
CVE-2023-54042 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/64s: Fix VAS mm use after free The refcount on mm is dropped before the coprocessor is detached.
CVE-2023-54037 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: prevent NULL pointer deref during reload Calling ethtool during reload can lead to call trace, because VSI isn't configured for some time, but netdev is alive. To fix it add rtnl lock for VSI deconfig and config. Set ::num_q_vectors to 0 after freeing and add a check for ::tx/rx_rings in ring related ethtool ops. Add proper unroll of filters in ice_start_eth(). Reproduction: $watch -n 0.1 -d 'ethtool -g enp24s0f0np0' $devlink dev reload pci/0000:18:00.0 action driver_reinit Call trace before fix: [66303.926205] BUG: kernel NULL pointer dereference, address: 0000000000000000 [66303.926259] #PF: supervisor read access in kernel mode [66303.926286] #PF: error_code(0x0000) - not-present page [66303.926311] PGD 0 P4D 0 [66303.926332] Oops: 0000 [#1] PREEMPT SMP PTI [66303.926358] CPU: 4 PID: 933821 Comm: ethtool Kdump: loaded Tainted: G OE 6.4.0-rc5+ #1 [66303.926400] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.00.01.0014.070920180847 07/09/2018 [66303.926446] RIP: 0010:ice_get_ringparam+0x22/0x50 [ice] [66303.926649] Code: 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 48 8b 87 c0 09 00 00 c7 46 04 e0 1f 00 00 c7 46 10 e0 1f 00 00 48 8b 50 20 <48> 8b 12 0f b7 52 3a 89 56 14 48 8b 40 28 48 8b 00 0f b7 40 58 48 [66303.926722] RSP: 0018:ffffad40472f39c8 EFLAGS: 00010246 [66303.926749] RAX: ffff98a8ada05828 RBX: ffff98a8c46dd060 RCX: ffffad40472f3b48 [66303.926781] RDX: 0000000000000000 RSI: ffff98a8c46dd068 RDI: ffff98a8b23c4000 [66303.926811] RBP: ffffad40472f3b48 R08: 00000000000337b0 R09: 0000000000000000 [66303.926843] R10: 0000000000000001 R11: 0000000000000100 R12: ffff98a8b23c4000 [66303.926874] R13: ffff98a8c46dd060 R14: 000000000000000f R15: ffffad40472f3a50 [66303.926906] FS: 00007f6397966740(0000) GS:ffff98b390900000(0000) knlGS:0000000000000000 [66303.926941] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [66303.926967] CR2: 0000000000000000 CR3: 000000011ac20002 CR4: 00000000007706e0 [66303.926999] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [66303.927029] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [66303.927060] PKRU: 55555554 [66303.927075] Call Trace: [66303.927094] <TASK> [66303.927111] ? __die+0x23/0x70 [66303.927140] ? page_fault_oops+0x171/0x4e0 [66303.927176] ? exc_page_fault+0x7f/0x180 [66303.927209] ? asm_exc_page_fault+0x26/0x30 [66303.927244] ? ice_get_ringparam+0x22/0x50 [ice] [66303.927433] rings_prepare_data+0x62/0x80 [66303.927469] ethnl_default_doit+0xe2/0x350 [66303.927501] genl_family_rcv_msg_doit.isra.0+0xe3/0x140 [66303.927538] genl_rcv_msg+0x1b1/0x2c0 [66303.927561] ? __pfx_ethnl_default_doit+0x10/0x10 [66303.927590] ? __pfx_genl_rcv_msg+0x10/0x10 [66303.927615] netlink_rcv_skb+0x58/0x110 [66303.927644] genl_rcv+0x28/0x40 [66303.927665] netlink_unicast+0x19e/0x290 [66303.927691] netlink_sendmsg+0x254/0x4d0 [66303.927717] sock_sendmsg+0x93/0xa0 [66303.927743] __sys_sendto+0x126/0x170 [66303.927780] __x64_sys_sendto+0x24/0x30 [66303.928593] do_syscall_64+0x5d/0x90 [66303.929370] ? __count_memcg_events+0x60/0xa0 [66303.930146] ? count_memcg_events.constprop.0+0x1a/0x30 [66303.930920] ? handle_mm_fault+0x9e/0x350 [66303.931688] ? do_user_addr_fault+0x258/0x740 [66303.932452] ? exc_page_fault+0x7f/0x180 [66303.933193] entry_SYSCALL_64_after_hwframe+0x72/0xdc
CVE-2023-54032 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix race when deleting quota root from the dirty cow roots list When disabling quotas we are deleting the quota root from the list fs_info->dirty_cowonly_roots without taking the lock that protects it, which is struct btrfs_fs_info::trans_lock. This unsynchronized list manipulation may cause chaos if there's another concurrent manipulation of this list, such as when adding a root to it with ctree.c:add_root_to_dirty_list(). This can result in all sorts of weird failures caused by a race, such as the following crash: [337571.278245] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] PREEMPT SMP PTI [337571.278933] CPU: 1 PID: 115447 Comm: btrfs Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1 [337571.279153] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [337571.279572] RIP: 0010:commit_cowonly_roots+0x11f/0x250 [btrfs] [337571.279928] Code: 85 38 06 00 (...) [337571.280363] RSP: 0018:ffff9f63446efba0 EFLAGS: 00010206 [337571.280582] RAX: ffff942d98ec2638 RBX: ffff9430b82b4c30 RCX: 0000000449e1c000 [337571.280798] RDX: dead000000000100 RSI: ffff9430021e4900 RDI: 0000000000036070 [337571.281015] RBP: ffff942d98ec2000 R08: ffff942d98ec2000 R09: 000000000000015b [337571.281254] R10: 0000000000000009 R11: 0000000000000001 R12: ffff942fe8fbf600 [337571.281476] R13: ffff942dabe23040 R14: ffff942dabe20800 R15: ffff942d92cf3b48 [337571.281723] FS: 00007f478adb7340(0000) GS:ffff94349fa40000(0000) knlGS:0000000000000000 [337571.281950] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [337571.282184] CR2: 00007f478ab9a3d5 CR3: 000000001e02c001 CR4: 0000000000370ee0 [337571.282416] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [337571.282647] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [337571.282874] Call Trace: [337571.283101] <TASK> [337571.283327] ? __die_body+0x1b/0x60 [337571.283570] ? die_addr+0x39/0x60 [337571.283796] ? exc_general_protection+0x22e/0x430 [337571.284022] ? asm_exc_general_protection+0x22/0x30 [337571.284251] ? commit_cowonly_roots+0x11f/0x250 [btrfs] [337571.284531] btrfs_commit_transaction+0x42e/0xf90 [btrfs] [337571.284803] ? _raw_spin_unlock+0x15/0x30 [337571.285031] ? release_extent_buffer+0x103/0x130 [btrfs] [337571.285305] reset_balance_state+0x152/0x1b0 [btrfs] [337571.285578] btrfs_balance+0xa50/0x11e0 [btrfs] [337571.285864] ? __kmem_cache_alloc_node+0x14a/0x410 [337571.286086] btrfs_ioctl+0x249a/0x3320 [btrfs] [337571.286358] ? mod_objcg_state+0xd2/0x360 [337571.286577] ? refill_obj_stock+0xb0/0x160 [337571.286798] ? seq_release+0x25/0x30 [337571.287016] ? __rseq_handle_notify_resume+0x3ba/0x4b0 [337571.287235] ? percpu_counter_add_batch+0x2e/0xa0 [337571.287455] ? __x64_sys_ioctl+0x88/0xc0 [337571.287675] __x64_sys_ioctl+0x88/0xc0 [337571.287901] do_syscall_64+0x38/0x90 [337571.288126] entry_SYSCALL_64_after_hwframe+0x72/0xdc [337571.288352] RIP: 0033:0x7f478aaffe9b So fix this by locking struct btrfs_fs_info::trans_lock before deleting the quota root from that list.
CVE-2022-50703 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: smsm: Fix refcount leak bugs in qcom_smsm_probe() There are two refcount leak bugs in qcom_smsm_probe(): (1) The 'local_node' is escaped out from for_each_child_of_node() as the break of iteration, we should call of_node_put() for it in error path or when it is not used anymore. (2) The 'node' is escaped out from for_each_available_child_of_node() as the 'goto', we should call of_node_put() for it in goto target.
CVE-2023-54033 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: fix a memory leak in the LRU and LRU_PERCPU hash maps The LRU and LRU_PERCPU maps allocate a new element on update before locking the target hash table bucket. Right after that the maps try to lock the bucket. If this fails, then maps return -EBUSY to the caller without releasing the allocated element. This makes the element untracked: it doesn't belong to either of free lists, and it doesn't belong to the hash table, so can't be re-used; this eventually leads to the permanent -ENOMEM on LRU map updates, which is unexpected. Fix this by returning the element to the local free list if bucket locking fails.
CVE-2023-54034 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommufd: Make sure to zero vfio_iommu_type1_info before copying to user Missed a zero initialization here. Most of the struct is filled with a copy_from_user(), however minsz for that copy is smaller than the actual struct by 8 bytes, thus we don't fill the padding.